Skip to main content

Rational Design of Novel Polyelectrolytes: Aluminosilicate/Poly(Ethylene Glycol) Copolymers

  • Chapter
Metal-Containing Polymeric Materials

Abstract

The field of solvent-free polymer electrolytes includes both polymer-salt complexes and more recently, polyelectrolytes. These materials comprise a class of solid ionic conductors which have been the subject of increasing attention in recent years due to their unique integration of desirable mechanical and electrochemical properties1. Solvent-free polymer electrolytes are the subject of much research as potential electrolytes for high energy density advanced batteries and other electrochemical devices.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.F. Shriver and G.C. Farrington, Solid ionic conductors, Chem. Eng. News 63:42–57 (1985).

    Article  CAS  Google Scholar 

  2. J. R. MacCallum and C. A. Vincent, “Polymer Electrolyte Reviews, Vol. 1 and 2” Elsevier, London (1987, 1989).

    Google Scholar 

  3. J.S. Tonge and D.F. Shriver, Polymer electrolytes, in: “Polymers for Electronic Applications,” J.H. Lai, ed., CRC Press, Boca Raton, Florida (1989).

    Google Scholar 

  4. M.A. Ratner and D.F. Shriver, Ion transport in solvent-free polymers, Chem. Rev. 88:109–24 (1988).

    Article  CAS  Google Scholar 

  5. (a) A.A. Blumberg, S.S. Pollack, and C.A.J. Hoeve, A poly (ethylene oxide)-mercuric chloride complex, J. Polym. Sci. Part A, 2:2499 (1964). (b) R.D. Lunberg, F.E. Bailey, and R.W. Callard, Interaction of inorganic salts with poly (ethylene oxide), J. Polym. Sci. Part A, 1(4): 1563 (1966).

    Google Scholar 

  6. (a) P.V. Wright, Electrical conductivity in ionic complexes of poly(ethylene oxide), Br. Polym. J. 7:319 (1975). (b) D.E. Fenton, J.M. Parker, and P.V. Wright, Complexes of alkali metal ions with poly (ethylene oxide), Polymer 14:589 (1973).

    Google Scholar 

  7. Y. Takahashi and H. Tadokoro, Structural studies of polyethers (-(CH2)m-O-)n. X. Crystal structure of PEO, Macromolecules, 6:672 (1973).

    Article  CAS  Google Scholar 

  8. figure adapted from: S. Okamura and Y. Chatani, Crystal structure of PEO sodium iodide complex, Polymer, 28:1815 (1987).

    Article  Google Scholar 

  9. (a) B. Papke, M.A. Ratner, R. Dupon, T. Wong, M. Brodwin, and D.F. Shriver, Structure and ion transport in polymer-salt complexes, Solid State Ionics 5:83 (1981). (b) B. Papke, M.A. Ratner, and D.F. Shriver, Vibrational spectroscopy and structure of polymer electrolytes, PEO complexes of alkali metal salts, J. Phys. Chem. Solids 42:493 (1981). (c) D. Teeters and R. Frech, Temperature dependent spectroscopic studies of PPO and PPO-inorganic salt complexes, Solid State Ionics 18/19:271 (1986).

    Google Scholar 

  10. (a) M.B. Armand, J.M. Chabagno, and M.J. Duclot, Poly-ethers as solid electrolytes, in: “Fast Ion Transport in Solids: Electrodes and Electrolytes,” P. Vashishna, J.N. Mundy, and G.K. Shenoy, eds., North-Holland, New York, p.131 (1979). (b) J.M. Parker, P.V. Wright, and C.C. Lee, A double helical model for some alkali metal ion-poly (ethylene oxide) complexes, Polymer 22:1305 (1981).

    Google Scholar 

  11. (a) M. Minier, C. Berthier, and W. Gorecki, Thermal analysis and NMR studies of a PEO complex electrolyte: PEO(LiSO3CF3)x, J. Phys. 45:739 (1984). (b) C. Berthier, W. Gorecki, M. Minier, M.B. Armand, J.M. Chabagno, and P. Rigaud, Microscopic investigation of ionic conductivity in alkali metal salts-PEO adducts, Solid State Ionics 11:91 (1983).

    Google Scholar 

  12. M.L. Williams, R.F. Landel, and J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Chem. Soc. 77:3701 (1955).

    Article  CAS  Google Scholar 

  13. (a) G. Grest and M.H. Cohen, Liquids, glasses, and the glass transition: a free volume approach, Adv. Chem. Phys. 48:455 (1981). (b) M. Watanabe and N. Ogata, Ionic conductivity of polymer electrolytes and future applications, Br. Polym. J. 20:181 (1988).

    Google Scholar 

  14. (a) J.H Gibbs and E.A. DiMarzio, Nature of the glass transition and the glassy state, J. Chem. Phys. 28:373 (1958). (b) J.H Gibbs, “Modern Aspects of the Vitreous State,” Butterworths, London, Ch.7 (1965). (c) G. Adam and J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys. 43:139 (1965). (d) B.L. Papke, M.A. Ratner, and D.F. Shriver, Conformation and ion-transport models for the structure and ionic conductivity in complexes of polyethers with alkali metal salts, J. Electrochem. Soc. 129:1694 (1982).

    Google Scholar 

  15. M. Doyle, T.F. Fuller, and J. Newman, Modeling of galvanostatic charge and discharge of the lithium/ polymer/ insertion cell, J. Electrochem. Soc. 140(6): 1526–33 (1993).

    Article  Google Scholar 

  16. M.C. Lonergan, Ph.D. thesis, Northwestern University, Evanston, IL (1994).

    Google Scholar 

  17. L. C. Hardy and D. F. Shriver, Preparation and electrical response of solid polymer electrolytes with only one mobile species, J. Am. Chem. Soc. 107:3823–8 (1985).

    Article  CAS  Google Scholar 

  18. (a) S. Takeoka, K. Horiuchi, S. Yamagata, and E. Tsuchida, Sodium ion conduction of perfluorosulfonate ionomer/poly (oxyethylene) composite films, Macromolecules 24:2003–6 (1991). (b)D. J. Bannister, G. R. Davies, I. M. Ward, and J. E. Mclntyre, ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers, Polymer 25:1291–6 (1984). (c)G. Zhou, I. M. Khan, and J. Smid, Cation transport polymer electrolytes. Siloxane comb polymers with pendant oligo-oxyethylene chains and sulphonate groups, Polym. Commun. 30:52–5 (1989). (d)T. Hamaide, C. Carré, and A. Guyot, Ionic conductivity in sulphonate end-capped poly(ethylene oxide), in: “Second International Symposium on Polymer Electrolytes,” B. Scrosati, ed., Elsevier, New York (1990). (e)M. Watanabe, S. Nagano, K. Sanui, and N. Ogata, Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements, Solid State Ionics 28–30:911–7 (1988). (f)E. A. Reitman and M. L. Kaplan, Single-ion conductivity in comblike polymers, J. Polym. Sci. 28:187–91 (1990). (g)E. Tsuchida, N. Kobayashi, and H. Ohno, Single-ion conduction in poly[(oligo(oxyethylene)methacrylate)-co-(alkali-metal methacrylates)], Macromolecules 21:96–100 (1988). (h)J. F. LeNest, A. Gandini, H. Cheradame, and J. P. Cohen-Addad, Cationic transport features of ionomeric polymer networks, Polym. Commun. 28:302–5 (1987).

    Google Scholar 

  19. S. Ganapathiappan, K. Chen, and D. F. Shriver, A new class of cation conductors: polyphosphazene sulfonates, Macromolecules 21:2299–2301 (1988).

    Article  CAS  Google Scholar 

  20. K. Chen and D.F. Shriver, Magnesium ion conducting polymeric electrolytes, Chem. Mater. 3:771–2 (1991).

    Article  Google Scholar 

  21. K. E. Doan, M. A. Ratner, and D. F. Shriver, Synthesis and electrical response of single-ion conducting network polymers based on sodium poly(tetraalkoxy aluminates), Chem. Mater. 3:418 (1991).

    Article  CAS  Google Scholar 

  22. K.E. Doan, B.J. Heyen, M.A. Ratner, and D.F. Shriver, Influence of cryptands and crown ethers on ion transport and vibrational spectra of polymer salt complexes, Chem. Mater. 2:539 (1990).

    Article  CAS  Google Scholar 

  23. T. F. Yeh, H. Liu, Y. Okamoto, H. S. Lee, and T. A. Skotheim, Polyelectrolytes with sterically hindered anionic charges, in: “Second International Symposium on Polymer Electrolytes,” B. Scrosati, ed., Elsevier, New York (1990). An ostensibly identical polymer, synthesized in our laboratory, exhibited a lower conductivity (1.4x10-6 S cm-1 @ 30° C vs. 5x10-5 S cm-1): M.C. Lonergan, M.A. Ratner, and D.F. Shriver, Cryptand addition to polyelectrolytes: a means of conductivity enhancement and a probe of ionic interactions, J. Am. Chem. Soc. in press (1995).

    Google Scholar 

  24. K. Chen, S. Ganapathiappan, and D.F. Shriver, Cryptate effects on sodium-conducting phosphazene polyelectrolytes, Chem. Mater. 1:483–4 (1989).

    Article  CAS  Google Scholar 

  25. H. Marsmann, 29Si-NMR spectroscopic results, in: “Oxygen-17 and Silicon-29 (NMR, Basic Principles and Progress; Vol.17),” P. Diehl, E. Fluck, and R. Kosfeld, eds., Springer-Verlag, New York (1981) pp.78, 147, 166, 194–5.

    Google Scholar 

  26. O. Křiž, B. Čásenský, A. Lyčka, J. Fusek, and S. Heřmánek,27A1 NMR behavior of aluminum alkoxides, J. Magn. Reson., 60:375–81 (1984).

    Google Scholar 

  27. FJ. Feher, T.A. Budzichowski, and K.J. Weller, Polyhedral aluminosilsesquioxanes: soluble organic analogues of aluminosilicates, J. Am. Chem. Soc., 111:7288–9 (1989).

    Article  CAS  Google Scholar 

  28. H. Schmidbaur, Recent developments in the chemistry of heterosiloxanes, Angew. Chem. Int. Ed. 4(3):201 (1965).

    Article  Google Scholar 

  29. M.A. Ratner and A. Nitzan, Conductivity in polymer ionics: dynamic disorder and correlation, Faraday Discuss. Chem. Soc. 88:19–42 (1989).

    Article  Google Scholar 

  30. P. Ferloni, G. Chiodelli, A. Magistris, and M. Sanesi, , Solid State Ionics 18/19:265 (1986).

    Article  Google Scholar 

  31. J.R. MacCullum, MJ. Smith, and C.A. Vincent, The effect of radiation-induced crosslinking on the conductance of LiClO4-PEO electrolytes, Solid State Ionics 11:307 (1984).

    Article  Google Scholar 

  32. R. Dupon, B.L. Papke, M.A. Ratner, and D.F. Shriver, Ion transport in polymer electrolytes formed between poly (ethylene succinate) and LiBF4, J. Electrochem. Soc. 131:586 (1984).

    Article  CAS  Google Scholar 

  33. P.M. Blonsky, D.F. Shriver, P. Austin, and H.R. Allcock, Poly-phosphazene solid electrolytes, J. Am. Chem. Soc. 106:6854 (1984).

    Article  CAS  Google Scholar 

  34. J.P Lemmon, R.L. Kohnert, and M.L. Lerner, Characterization of a stoichiometric range of sodium salt complexes of amorphous poly [(oxymethylene)oligo(oxyethylene)] by differential scanning calorimetry and 23Na NMR, Macromolecules 26:2767–70 (1993).

    Article  CAS  Google Scholar 

  35. A. Bouridah, F. Dalard, D. Deroo, and M.B. Armand, Potentiometric measurements of ionic mobilities in PEO electrolytes, Solid State Ionics 18/19:287 (1986).

    Article  Google Scholar 

  36. M. Leveque, J.F. LeNest, A. Gandini, and H. Cheradame, Ionic transport numbers in polyether networks containing different metal salts, Makromol. Chem. Rapid Commun. 4:497 (1982).

    Article  Google Scholar 

  37. P.G. Hall, G.R. Davies, J.E. McIntyre, I.M. Ward, D.J. Bannister, and K.M.F. LeBrocq, Ion conductivity in polysiloxane comb polymers with ethylene glycol teeth, Polym. Prepr. 27:98 (1986).

    CAS  Google Scholar 

  38. P.R. Soresen, and T. Jacobson, Limiting currents in the polymer electrolyte: PEOxLiSO3CF3, Solid State Ionics 9/10:1147 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Rawsky, G.C., Shriver, D.F. (1990). Rational Design of Novel Polyelectrolytes: Aluminosilicate/Poly(Ethylene Glycol) Copolymers. In: Pittman, C.U., Carraher, C.E., Zeldin, M., Sheats, J.E., Culbertson, B.M. (eds) Metal-Containing Polymeric Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0669-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0669-6_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7919-8

  • Online ISBN: 978-1-4613-0669-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics