Advertisement

Cholinergic Drug Studies in Dementia and Depression

  • Paul A. Newhouse
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 282)

Abstract

For over 30 years researchers have been investigating the involvement of central cholinergic systems in the processes of memory, learning, attention and other cognitive operations. These studies received a boost when the hypothesis was generated that cholinergic lesions in the brains of patients suffering from Alzheimer’s Disease might be related to the cognitive pathology of that disorder (Coyle et al., 1983). This hypothesis has led to a number of therapeutic studies in Alzheimer’s Disease aimed at improving the cognitive symptomatology by cholinergic stimulation or replacement (for example, Brinkman et al., 1982; Davis and Mohs, 1982; Ferris et al., 1979; Mohs et al., 1985). The results of the studies have been for the most part disappointing; the reasons for this remain incompletely understood. This chapter will review a series of studies done in our laboratory at the National Institute of Mental Health attempting to examine in more detail the clinical relevance of cholinergic pathology in Alzheimer’s disease. The general paradigm uses acute doses of cholinergic agonists and antagonists as pharmacological probes of the functional status of the central cholinergic system in demented patients suffering from Alzheimer’s Disease, and as comparison groups, elderly normals and elderly patients suffering from depression.

Keywords

Free Recall Nicotinic Receptor Brief Psychiatric Rate Scale Nicotine Administration Intrusion Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartus, R. T., Dean, R. L., Beer, B. and Lippa, A. S. (1982). The cholinergie hypothesis of geriatric memory dysfunction, Science, 217: 401–417.CrossRefGoogle Scholar
  2. Blessed G., Tomlison, B. E., Roth, M. (1968). The association between quantitative measures of dementia and of senile change on the cerebral grey matter of elderly subjects. Br. J. Psychiatry, 114: 797.PubMedCrossRefGoogle Scholar
  3. Brinkman, S. D., Pomara, N., Goodnick, P. J., Barnett, M. A. and Domino, E. F. (1982). A dose-ranging study of lecithin in the treatment of primary degenerative dementia (Alzheimer disease), J. Clin. Psythopharmaco1., 2: 281–285.Google Scholar
  4. Buschke, H. (1973). Selective reminding for analysis of memory and learning. J. Verb. Learn. Behay., 12: 543–550.CrossRefGoogle Scholar
  5. Christie, J. E., Shering, A., Ferguson, J. and Glen, A. I. M. (1981). Physostigmine and arecoline: Effects of intravenous infusions in Alzheimer presenile dementia, Br. J. Psychiatry, 138: 46–50.PubMedCrossRefGoogle Scholar
  6. Coyle, J. T., Price, D. L. and DeLong, M. R. (1983). Alzheimer’s disease: a disorder of cholinergic innervation. Science, 219: 1184–1190.PubMedCrossRefGoogle Scholar
  7. Davis, K. L. and Mohs, R. C. (1982). Enhancement of memory processes in Alzheimer’s disease with multiple-dose intravenous physostigmine. Am. J. Psychiatry, 139: 1421–1423.PubMedGoogle Scholar
  8. Drachman, D. A. (1977). Memory and cognitive function in man: Does the cholinergic system have a specific role? Neurology, 27: 783–790.PubMedGoogle Scholar
  9. Drachman, D. A. and Leavitt, J. (1974). Human memory and the cholinergic system. Arch. Neurol., 30: 113–121.PubMedGoogle Scholar
  10. Ferris, S. H., Sathananthan, G., Reisberg, B. and Gershon, S. (1979). Long-term choline treatment of memory-impaired elderly patients. Science, 205: 1039–1040.PubMedCrossRefGoogle Scholar
  11. Flynn, D. D. and Mash, D. C. (1985). Nicotine receptors in human frontal add infratemporal cortex: Comparison between Alzheimer’s disease and the normal. Neurosci. Abstr., 11: 1119.Google Scholar
  12. Hamilton, M. A. (1960). A rating scale for depression. J. Neurol. Neurosurg. Psychiatry, 23: 56.PubMedCrossRefGoogle Scholar
  13. Janowsky, D. S., El-Yousef, M. K., Davis, J. M. and Sekerke, H. J. (1972). A cholinergic-adrenergic hypothesis of mania and depression. Lancet, 1: 632–635.CrossRefGoogle Scholar
  14. Ksir, C., Benson, D. M. (1983). Enhanced behavioral response to nicotine in an animal model of Alzheimer’s disease. Psychopharmacology, 81: 272–273.PubMedCrossRefGoogle Scholar
  15. Marks, M. J., Stitzel, J. A., Collins, A. C. (1987). Influence of kinetics of nicotine administration on tolerance development and receptor level. Pharm. Biochem. Behay., 27: 505–512.CrossRefGoogle Scholar
  16. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D. and Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group. Neurology, 34: 939–944.PubMedGoogle Scholar
  17. McNair, D. M., Loor, M. and Droppleman, L. F. (1971). Profile of Mood States. Educational and Industrial Testing Service, San Diego, CA.Google Scholar
  18. Mohs, R. C., Davis, B. M., Johns, C. A., Mathe, A. A., Greenwald, B. S., Harvath, T. B. and Davis, K. L. (1985). Oral physostigmine treatment of patients with Alzheimer’s disease. Am. J. Psychiatry, 142: 28–33.PubMedGoogle Scholar
  19. Newhouse, P. A., Sunderland, T., Thompson, K., Tariot, P. N., Weingartner, H., Murphy, D. L. (1986a). Dose related physiologic, behavioral, and cognitive effects of nicotine on naive human subjects. Neurosci. Abstr., 12: 1445.Google Scholar
  20. Newhouse, P. A., Sunderland, T., Thompson, K., Tariot, P. N., Weingartner, H., Mueller, E. R., Cohen, R. M., Murphy, D. L. (1986b). Intravenous nicotine in a patient with Alzheimer’s disease. Am. J. Psychiatry, 143: 1494–1495.PubMedGoogle Scholar
  21. Newhouse, P., Sunderland, T., Tariot, P., Thompson, K., Weingartner, H., Mellow, A., Cohen, R. M., Murphy, D. L. (1988). The effects of acute scopolamine in geriatric depression. Arch. Gen. Psych., 45: 906–912.Google Scholar
  22. Overall, J. E. and Gorham, D. R. (1962a). The Brief Psychiatric Rating Scale, Psychol. Rep., 10: 799–812.Google Scholar
  23. Perry, E. K., Perry, R. H., Smith, C. J., Dick, D. J., Candy, J. M., Edwardson, J. A., Fairbairn, A., Blessed, G. (1987). Nicotinic receptor abnormalities in Alzheimer’s and Parkinson’s disease, J. Neurol. Neurosurg., 50: 806–809.CrossRefGoogle Scholar
  24. Reisberg, B., Ferris, S. H., DeLean, M. J. and Crook, T. (1982). The global deterioration scale for assessment of primary degenerative dementia, Am. J. Psychiatry, 139: 1136–1139.PubMedGoogle Scholar
  25. Rowell, P. P., Winkler, D. L. (1984). Nicotinic stimulation of [3H] acetylcholine release from mouse cortical synaptosomes. J. Neurochem., 43: 1593–1598.PubMedCrossRefGoogle Scholar
  26. Schwartz, R. D., Kellar, K. J. (1982). Nicotinic cholinergic receptors labeled by [3H]-acetylcholine in rat brain. Mol. Pharmacol., 22: 55–62.Google Scholar
  27. Shimohama, S., Taniguchi, T., Fujiwara, M., Kameyama, M. (1985). Biochemical characterization of the nicotinic cholinergic receptors in human brain: Binding of (-)-[3H] nicotine. J. Neurochem, 45: 604–610.PubMedCrossRefGoogle Scholar
  28. Sitaram, N., Weingartner, H. and Gillin, J. C. (1978). Human serial learning: Enhancement with arecoline and choline and impairment with scopolamine. Science, 201: 274–276.PubMedCrossRefGoogle Scholar
  29. Sunderland, T., Tariot, P. N., Cohen, R. M., Weingartner, H., Mueller, E. A. and Murphy, D. L. (1987). Anticholinergic sensitivity in patients with dementia of the Alzheimer type and age matched controls: A dose-response study. Arch. Gen. Psychiatry, 44: 418–426.PubMedGoogle Scholar
  30. Tariot, P. N., Cohen, R. M., Welkowitz, J. A., Sunderland, T., Newhouse, P. A., Murphy, D. L. and Weingartner, H. (1988). Multiple dose arecoline infusions in Alzheimer’s disease. Arch. Gen. Psychiatry, 95: 901–905.Google Scholar
  31. Van Kammen, D. P. and Murphy, D. L. (1975). Attenuation of the euphoriant and activating effects of d-and 1-amphetamine by lithium carbonate treatment. Psychopharmacologia, 44: 215–224.PubMedCrossRefGoogle Scholar
  32. Warburton, D. M., Wesnes, K., Shergold, K., James, M. (1986). Facilitation of learning and state dependency with nicotine. Psychopharmacology, 89: 55–59.PubMedCrossRefGoogle Scholar
  33. Wells, C. E. (1979). Pseudodementia. Am. J. Psychiatry, 136: 895–900.PubMedGoogle Scholar
  34. Wesnes, K., Revell, A. (1984). The separate and combined effects of scopolamine and nicotine on human information processing. Psychopharmacology, 84: 5–11.PubMedCrossRefGoogle Scholar
  35. Wesnes, K., Warburton, D. M. (1983). Smoking, nicotine, and human performance. Pharmacol Ther., 21: 189–208.PubMedCrossRefGoogle Scholar
  36. Whitehouse, P. J., Hedreen, J. C., White, C. L., Price, D. L. (1983). Basal forebrain neurons in dementia of Parkinson’s disease. Ann. Neurol., 13: 243–248.PubMedCrossRefGoogle Scholar
  37. Whitehouse, P. J., Martino, A. M., Antuono, P. G., Lowenstein, P. R., Coyle, J. T., Price, D. L., Kellar, K. J. (1986). Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Res., 371: 146–151.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Paul A. Newhouse
    • 1
  1. 1.Geriatric Psychiatry Service Neuroscience Research Unit, Department of PsychiatryUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations