Advertisement

Alzheimer’s Disease: Theories of Causation

  • Walter G. Bradley
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 282)

Abstract

Alzheimer’s disease will be the epidemic of the twenty-first century (1,2). The generally accepted figures are that 5% of individuals of the age of 65 have severe dementia, and another 10% have moderate dementia, with 30% having developed dementia if they live to the age of 90. The recent Boston study suggested that the figures were even higher, with 3% of those age 65 to 74 having probable Alzheimer’s disease, 18.7% of those 75 to 84, and 47.2% of those over 85 having probable Alzheimer’s disease (3). About 75% of patients with a clinical diagnosis of senile dementia prove to have Alzheimer’s disease, while a number of other disorders, such as multi-infarct dementia and other neurological degenerations, underlie the remaining proportion. Alzheimer’s disease is therefore going to be the major health care burden in the coming decades, both in terms of personal and family stress and of national health care costs. It is unnecessary, therefore, to emphasize the urgent need for an understanding of the cause of the disease and its treatment.

Keywords

Amyotrophic Lateral Sclerosis Neurofibrillary Tangle Motor Neuron Disease Senile Dementia Paired Helical Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katzman, R. (1983). Demography, definitions and problems, Ch. 1 in: The Neurology of Aging. (eds) Katzman, R. and Terry, R. D., David, F. A., Philadelphia.Google Scholar
  2. 2.
    Plum, F. (1979). Dementia: An approaching epidemic. Mature, 279: 373–373.Google Scholar
  3. 3.
    Evans, D. A., Funkenstein, H. H., Albert, M. S. (1989). Prevalence of Alzheimer’s disease in a community population of older persons. JAMA, 262: 2551–2556.PubMedCrossRefGoogle Scholar
  4. 4.
    Bick, K., Amaducci, L., Pepen, G. (1987). The Early Story of Alzheimer’s Disease. Liviana Press, Padova.Google Scholar
  5. 5.
    Editorial (1987). Alzheimer’s disease and associated disorders, Vol 1, pp. 1–4.CrossRefGoogle Scholar
  6. 6.
    Hansen, L. A., DeTeresa, R., Davies, D. (1988). Neocortical morphometry, lesion count, and choline acetyltransf erase levels in the age spectrum of Alzheimer’s disease, Neurol.. 38: 48–54.Google Scholar
  7. 7.
    Schiebel, A. B. and Tomiyasu, V. (1978). Dendritic sprouting in Alzheimer’s presenile dementia. Exper. Neurol., 60:1–8.CrossRefGoogle Scholar
  8. 8.
    Hamos, J. E., DeGennaro, L. J., Drachman, D. A. (1989). Synaptic loss in Alzheimer’s disease and other dementias. Neurol., 39: 355–361.Google Scholar
  9. 9.
    Cutler, N. R., Haxby, J. V., Duara, R. (1985). Clinical history, brain metabolism and neuro-psychological function in Alzheimer’s disease, Ann. Neurol. 18: 298–309.PubMedCrossRefGoogle Scholar
  10. 10.
    Coyle, J. T., Price, D. L., Delong, M. R. (1983). Alzheimer’s disease: a disorder of cortical cholinergie innervation. Science, 219: 1184–1189.PubMedCrossRefGoogle Scholar
  11. 11.
    Carlson, A. (1983). Changes in neurotransmitter systems in the aging brain and in Alzheimer’s disease. Ch 13 in Alzheimer’s Disease, eds: Reisberg, B., Free Press, New York.Google Scholar
  12. 12.
    Davies, P. (1983). An update on the neurochemistry of Alzheimer’s disease, pp. 75–86 in: Advances in Neurology, 38 The Dementias. Eds: Mayeux, R. and Rosen, W. G., Raven Press, New York.Google Scholar
  13. 13.
    Francis, P. T., Palmer, A. M., Sims, N. R. (1985). Neurochemical studies of early onset Alzheimer’s disease. New Engl. J. Med., 313: 7–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Ferrier, I. N., Cross, A. J., Johnson, J. A. (1983). Neuropeptides in Alzheimer’s type dementia. J. Neurol. Sci., 62: 159–170.PubMedCrossRefGoogle Scholar
  15. 15.
    Waters, C. (1988). Cognitive enhancing agents: Current status in the treatment of Alzheimer’s disease. Can. J. Neurol. Sci., 15: 249–256.PubMedGoogle Scholar
  16. 16.
    Perry, G., Rizzuto, N., Autilio-Gambetti, L. (1985). Paired helical filaments from Alzheimer’s disease patients contain cytoskeletal components. Proc. Nat. Acad. Sci., 82: 3916–3920.PubMedCrossRefGoogle Scholar
  17. 17.
    Grundke-Iqbal, I., Johnson, A. B., Wisniewski, H. M. (1979). Evidence that Alzheimer’s disease neurofibrillary tangles originate from neurotubules. Lancet, 1: 578–580.PubMedCrossRefGoogle Scholar
  18. 18.
    Selkoe, D. J., Abraham, C. R., Podlisny, M. D. (1986). Isolation of low molecular-weight proteins from amyloid plaque fibers in Alzheimer’s disease. J. Neurochem, 46: 1820–1834.PubMedCrossRefGoogle Scholar
  19. 19.
    Blessed, G., Tomlinson, B. E., Roth, M. (1968). The association between quantitative measures of dementia and of senile changes in the cerebral grey matter of elderly subjects. Brit. J. Psychiat., 114: 797–811.PubMedCrossRefGoogle Scholar
  20. 20.
    Khachaturian, Z. S. (1985). Diagnosis of Alzheimer’s disease. Arch. Neurol., 42: 1097–1105.PubMedGoogle Scholar
  21. 21.
    Crapper, D. R., Quittkat, S., Krishnan, S. S. (1980). Intranuclear aluminum content in Alzheimer’s disease, dialysis encephalopathy and experimental aluminum encephalopathy. Acta Neuropath. (Berl.), 50: 1924.CrossRefGoogle Scholar
  22. 22.
    O’Hare, J. A., Callaghan, N. M. (1983). Dialysisencephalopathy. Medicine, 62: 129–141.PubMedGoogle Scholar
  23. 23.
    Crapper, D. R., Karlik, S. and De Boni, V. (1978). Aluminum and other metals in senile (Alzheimer’s) dementia, pp. 471–484, in Alzheimer’s disease: Senile dementia and related disorders. Aging (Vol. 7). Eds: Katzman, R., Terry, R. D., Bick, K. L. Raven Press, N.Y.Google Scholar
  24. 24.
    Schwartz, A. S., Frey, J. L., Lukas, R. J. (1988). Risk factors in Alzheimer’s disease: Is aluminum hazardous to your health? Barrow Neurol. Inst. Quart., 4: 2–8.Google Scholar
  25. 25.
    Perl, D. P., Gajdusek, D. C., Garruto, R. M. (1982). Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonismdementia of Guam. Science, 217: 1053–1055.PubMedCrossRefGoogle Scholar
  26. 26.
    Perl, D. P. (1983). Pathologic association of aluminum in Alzheimer’s disease,) Ch 15 in: Alzheimer’s Disease. Ed: Reisberg, B., Free Press, New York.Google Scholar
  27. 27.
    Pendlebury, W. W., Beal, M. F., Kowall, N. W. (1988). Neuropathologic, neurochemical and immunocytochemical characteristics of aluminum-induced neurofilamentous degeneration. Neurotoxicology, 9: 503–510.PubMedGoogle Scholar
  28. 28.
    Pendlebury, W. W., Munos-Garcia, D., Perl, D. P. (1987). Cytoskeletal pathology in neuro-degenerative diseases. In: (eds) Ehlich, Y. H., Lenox, R. H., Koraecki, E., Molecular mechanisms of neuronal responsiveness. Plenum Press, New York, pp. 427–442.Google Scholar
  29. 29.
    Solomon, P. R., Beal, M. F., Pendlebury, W. W. (1988). Age-related description of classical conditioning: A model system approach to memory disorders. Neuroseology of Aging, 9: 535–546.CrossRefGoogle Scholar
  30. 30.
    Peterson, C., Goldman, J. E. (1986). Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors. Proc. Nat. Acad. Sci., 83: 2758–2762.PubMedCrossRefGoogle Scholar
  31. 31.
    Tsubaki, T., Yase, Y. (eds) (1988). Amyotrophic lateral sclerosis, Excerpta Medica Int. Conf. Series 769, Amsterdam.Google Scholar
  32. 32.
    Spencer, P. S., Palmer, V., Ohta, M. (1988). Cycad, a suspect etiological factor for Guam ALS/PD, is associated with motor neuron disease in Irian Jaya, Indonesia and Kii peninsula, Japan, pp. 35–40. In: Tsubaki, T. and Yase, Y. (eds): Spencer, P. S., Palmer, V., Ohta, M 769, Amsterdam.Google Scholar
  33. 33.
    Plaitakis, A., Caroscio, J. T. (1987). Abnormal glutamate metabolism in amyotrophie lateral sclerosis. Neurol., 22: 575–579.Google Scholar
  34. 34.
    Martyn, C. N., Osmond, C., Wardson, J. A. (1989). Geographical relation between Alzheimer’s disease and aluminum in drinking water. Lancet, 59–62.Google Scholar
  35. 35.
    Editorial, The Lancet,January 14, 1989. Aluminum and Alzheimer’s disease, 82–83.Google Scholar
  36. 36.
    Heston, L. L., Mastri, A. R., Anderson, V. E. (1981). Dementia of the Alzheimer’s type. Arch. Gen. Psych., 38: 1085–1090.Google Scholar
  37. 37.
    Heston, L. L. (1983). Genetic studies of dementia, Ch 6 in The Epidemiology of Dementia. Eds: Mortimer, J. A., Schuman, L. M., Oxford Univ. Press, New York, 101–114.Google Scholar
  38. 38.
    Nee, L. E., Polinsky, R. J., Eldridge, R. (1983). A family with histologically confirmed Alzheimer’s disease. Arch. Neurol., 40: 203–208.PubMedGoogle Scholar
  39. 39.
    Matsuyama, S. S. (1983). Genetic factors in dementia of the Alzheimer-type. Ch 21 in Alzheimer’s Disease. Ed: Reisberg, B., Free Press, New York, 155–160.Google Scholar
  40. 40.
    Farrer, L. A., O’Sullivan, D. M., Cupples, L. A. (1989). Assessment of genetic risk for Alzheimer’s disease among first degree relatives. Ann. Neurol., 25: 485–493.PubMedCrossRefGoogle Scholar
  41. 41.
    Wisniewski, K. E., Wiskiewski, H. M., Wen, G. Y. (1985). Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol., 17: 278–282.PubMedCrossRefGoogle Scholar
  42. 42.
    Editorial (1987). Alzheimer’s Disease, Down’s syndrome and Chromosome 21. Lancet, 1: 1011–1012.Google Scholar
  43. 43.
    Hardy, J. (1988). Molecular biology and Alzheimer’s disease. TINS, 11: 293–294.PubMedGoogle Scholar
  44. 44.
    Tanzi, R. E., Gusella, J. F., Watkins, P.C. (1987). Amyloid B protein gene: cDNA, mRNA distribution and genetic linkage near the Alzheimer’s locus. Science, 235: 880–884.PubMedCrossRefGoogle Scholar
  45. 45.
    St. George-Hyslop, P. H., Tanzi, R. E., Polinski, R. J. (1987). The genetic defect causing familial Alzheimer’s disease maps to chromosome 21. Science, 235: 885–890.PubMedCrossRefGoogle Scholar
  46. 46.
    Mann, D. M. A., Yates, P. O. (1974). Motor neuron disease. J. Neurol. Neurosurg. Psychiat., 37: 1036–1047.CrossRefGoogle Scholar
  47. 47.
    Mann, D. M. A., Neary, D., Yates, P.O. (1981). Alterations in the protein synthetic capability of nerve cells in Alzheimer’s disease. J. Neurosurg. Psychiat., 44: 97–105.CrossRefGoogle Scholar
  48. 48.
    Mann, D. M. A., Yates, P.O. (1983). Pathological basis of neuro-transmitter changes in Parkinson’s disease. Neuropath. Exp. Neurobiol., 8: 3–14.CrossRefGoogle Scholar
  49. 49.
    Lewis, P. N., Lukin, W. J., DeBoni, V. (1981). Changes in chromatin structure associated with Alzheimer’s disease. J. Neurochem., 37: 1193–1202.PubMedCrossRefGoogle Scholar
  50. 50.
    Crapper-McLachlan, D. R., Lewis, P. N., Lukiw, W. J. (1984). Chromatin structure in dementia. Ann. Neurol., 15: 329–334.CrossRefGoogle Scholar
  51. 51.
    Crapper-McLachlan, D. R., Lewis, P. N. (1985). Alzheimer’s disease: errors in gene expression. Canadian J. Neurol. Sci., 12: 1–5.Google Scholar
  52. 52.
    Robbins, J. H. (1978). ICN-UCLA Symposia on molecular and cellular biology, Vol IX, Academie Press, 603–629.Google Scholar
  53. 53.
    Andrews, A. D., Carrett, S. R., Robbins, J. H. (1978). Xeroderna pigmentosum: Neurological abnormalities correlate with colony forming ability after UV-radiation. Proc. Nat. Acad. Sci., 75: 1984–1988.PubMedCrossRefGoogle Scholar
  54. 54.
    Robbins, J. H., Otswka, F., Tarone, R. E. (1983). Radiosensitivity in Alzheimer’s disease and Parkinson’s disease. Lancet, 1: 468–469.PubMedCrossRefGoogle Scholar
  55. 55.
    Robinson, S. H., Munzer, J. S., Tandan, R. (1987). Alzheimer’s disease cells have defective repair of alkylating agent-induced DNA damage. Ann. Neurol., 21: 250–258.CrossRefGoogle Scholar
  56. 56.
    Tandan, R., Robison, S. H., Bartlett, J. D. (1988). DNA damage and repair in ALS and Alzheimer’s disease lymphoid cells and monocytes. In: Amyotrophic Lateral Sclerosis. Eds: Tsubaki, T., Yase, Y., Elsevier, New York, 113–118.Google Scholar
  57. 57.
    Wetmur, J. G., Casals, J., Elizan, T. S. (1984). DNA binding protein, profiles in Alzheimer’s disease. J. Neurol. Sci., 66: 201–208.PubMedCrossRefGoogle Scholar
  58. 58.
    Mullaart, E., Boerrigter, M. E. T., Ravid, R. (1989). Increased levels of DNA breaks in cerebral corte of Alzheimer’s disease patients. In press.Google Scholar
  59. 59.
    Sajdel-Sulkowska, E. M., Marotta, C. A. (1984). Alzheimer’s disease brain: Alterations in RNA levels and in a ribonuclease-inhibitor complex, Science, 225: 947–949.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Walter G. Bradley
    • 1
  1. 1.Department of Neurology College of MedicineThe University of VermontBurlingtonUSA

Personalised recommendations