Higher-Order Electron Transport in Gases

  • B. M. Penetrante
  • J. N. Bardsley


We present calculations of the electron transport coefficients in He, Ne and Ar, based on the density gradient expansion theory. Of particular interest is the skewness coefficient D3. The arrival time spectra (ATS) are computed for typical drift tube conditions in order to assess the measurability of the higher-order transport coefficients. We show that D3is measurable and that present experiments have the capability of resolving it from the ATS. The reported measured data on D3, however, show large non-hydrodynamic behavior. An analysis of the TOF density profile based on a nonlinear continuity equation is also presented. The significance of including higher-order transport effects, either through the use of higher-order coefficients or the use of nonlinear continuity equation, is discussed.


Drift Velocity Transport Coefficient Collision Cross Section Nonlinear Solution Skewness Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Crompton, R. W., personal communication.Google Scholar
  2. Crompton, R. W., M. T. Elford, and A. G. Robertson, 1970, Aust. J. Phys. 23, 667.Google Scholar
  3. Denman, C. A., and L. A. Schlie, 1989a, submitted to Rev. Sci. Instr.Google Scholar
  4. Denman, C. A., and L. A. Schlie, 1989b, “Sensitive High-Temporal-Resolution TOF Electron Drift Tube: Assymetrical Current Pulse Observation and Determination of VD, DL and D3,” Sixth International Swarm Seminar, Glen Cove, N.Y.Google Scholar
  5. Hindmarsh, A., 1980, ACM Signum Newsletter.Google Scholar
  6. Huxley, L. G. H., 1972, Aust. J. Phys. 25, 43.Google Scholar
  7. Huxley, L. G. H., and R. W. Crompton, 1974, “The Diffusion and Drift of Electrons in Gases,” ( Wiley, New York).Google Scholar
  8. Ingold, J. H., 1989, “Diffusion Theory of Electrons in a Uniform Electric Field: Time-of-Flight Analysis,” Sixth International Swarm Seminar, Glen Cove, N.Y.Google Scholar
  9. Kumar, K., H. R. Skullerud, and R. E. Robson, 1980, Aust. J. Phys. 33, 343.Google Scholar
  10. Kunhardt, E. E., J. Wu, and B. M. Penetrante, 1988, Phys. Rev. A 37, 1654.CrossRefGoogle Scholar
  11. Kunhardt, E. E., 1989, “Nonlinear Diffusion,” Sixth International Swarm Seminar, Glen Cove, N.Y.Google Scholar
  12. Nakamura, Y., 1987, J. Phys. D 20, 933.CrossRefGoogle Scholar
  13. Nakamura, Y., and M. Kurachi, 1988, J. Phys. D 21, 718.CrossRefGoogle Scholar
  14. Pack, J. L., and A. V. Phelps, 1961, Phys. Rev. 121, 798.CrossRefGoogle Scholar
  15. Parker, J. H., and J. J. Lowke, 1969, Phys. Rev. 181, 290.CrossRefGoogle Scholar
  16. Penetrante, B. M., and J. N. Bardsley, 1984, J. Phys. D 17, 1971.CrossRefGoogle Scholar
  17. Phelps, A. V., J. L. Pack, and L. S. Frost, 1960, Phys. Rev. 117, 470.CrossRefGoogle Scholar
  18. Robertson, A. G. 1972, J. Phys. B 5, 648.CrossRefGoogle Scholar
  19. Sincovec, R. F., and N. K. Madsen, 1975, ACM Trans. Math. Software 1, 261.CrossRefGoogle Scholar
  20. Skullerud, H. R., 1969, J. Phys. B 2, 696.CrossRefGoogle Scholar
  21. Skullerud, H. R., 1974, Aust. J. Phys. 27, 195.CrossRefGoogle Scholar
  22. Wagner, E. B., F. J. Davis, and G. S. Hurst, 1967, J. Chem. Phys. 47, 3138.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • B. M. Penetrante
    • 1
  • J. N. Bardsley
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations