Skip to main content
  • 164 Accesses

Abstract

Traditional electron swarm studies have focused on the range of conditions for which the electron transport and rate coefficients can be well-parameterized by the local value of the ratio of the electric field to the neutral density, E(r,t)/N. We have rather informally referred to this condition where the electron velocity distribution function (evdf) at any point in space or time can be defined by the local reduced field as “equilibrium with the field” or “local field equilibrium”. Over the years, and driven to a large extent by the need for accurate analyses of swarm experiments for the determination of cross sections, a rather complete theory of electron transport in weakly ionized gases has been developed (Kumar et al., 1980, 1984) subject to the condition of local field equilibrium. In its usual form, this theory involves an expansion of the space and time dependent evdf in powers of the gradient of the electron density, and it provides a computational procedure for obtaining the space-time evolution of the electron density in terms of electron transport and rate coefficients which are functions of the local value of E(r,t)/N (Kumar et al., 1980, 1984). By analogy with theories in other areas of transport phenomena, this has been referred to as “hydrodynamic” electron transport, and the terms “hydrodynamic” and “local field equilibrium” have been used synonymously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allis, W. P., 1956, in “Handbuch der Physik,” Flügge, S. ( Ed. ), Springer, Berlin.

    Google Scholar 

  • Bayle, P., J. Vacquie, and M. Bayle, 1986, Phys. Rev. A 34, 360.

    Article  Google Scholar 

  • Boeuf, J. P., and E. Marode, 1982, J. Phys. D 15, 2069.

    Article  Google Scholar 

  • Boeuf, J. P., and P. Ségur, 1987, in “Interactions Plasmas Froids Materiax,” C. Lejeune, (Ed.), Les Editions de Physique, Les Ulis, France.

    Google Scholar 

  • Braglia, G. L., L. Romano, and M. Dilligenti, 1982, Lett. Nuovo Cim. 35, 193.

    Article  CAS  Google Scholar 

  • Brewster, A. Keith, and J. W. Westhaven, 1937, J. Appl. Phys. 8, 779.

    Article  Google Scholar 

  • Drallos, P. J., and J. M. Wadehra, 1988, J. Appl. Phys. 63, 5601.

    Article  Google Scholar 

  • Druyvesteyn, M. J., and F. M. Penning, 1940, Rev. Mod. Phys. 12, 87.

    Article  CAS  Google Scholar 

  • Dutton, J., 1975, J. Phys. Chem. Ref. Data 4, 577.

    Article  CAS  Google Scholar 

  • Friedland, L., 1974, J. Phys. D 7, 2246.

    Article  CAS  Google Scholar 

  • Friedland, L., 1977, Phys. Fluids 20, 1461.

    Article  CAS  Google Scholar 

  • Gallagher, J. W., E. C. Beaty, J. Dutton, and L. C. Pitchford, 1983, J. Phys. Chem. Ref. Data 12, 109.

    Article  CAS  Google Scholar 

  • Haydon, S. C., and O. M. Williams, 1976, J. Phys. D 9, 523.

    Article  CAS  Google Scholar 

  • Hays, G. N., L. C. Pitchford, J. B. Gerardo, J. T. Verdeyen, and Y. M. Li, 1987, Phys. Rev. A 36, 2031.

    Article  CAS  Google Scholar 

  • Holst, G., and E. Oosterhuis, 1921, Physica 1, 78.

    CAS  Google Scholar 

  • Huxley, L. G. H., and W. R. Crompton, 1974, “The Diffusion and Drift of Electrons in Gases,” John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Ikuta, N., and Y. Murakami, 1987, J. Phys. Soc. Jpn. 56, 115.

    Article  Google Scholar 

  • Ingold, J. H., 1978, in “Gaseous Electronics”, Electrical Discharges, M. N. Hirsch, and H. J. Oskam, (Eds.), Academic, New York.

    Google Scholar 

  • Itoh, T., and T. Musha, 1960, J. Phys. Soc. Jpn. 15, 1675.

    Article  CAS  Google Scholar 

  • Kumar, K., H. R. Skullerud, and R. E. Robson, 1980, Aust. J. Phys. 33, 343.

    CAS  Google Scholar 

  • Kumar, K., 1984, Phys. Repts. 112, 319.

    Article  CAS  Google Scholar 

  • Kushner, M. J., these proceedings.

    Google Scholar 

  • Li, Y. M., L. C. Pitchford, and T. A. Moratz, 1989, Appl. Phys. Lett. 54, 1403.

    Article  Google Scholar 

  • Lin, S. L., R. E. Robson, and E. A. Mason, 1979, J. Chem. Phys. 71, 3483.

    Article  CAS  Google Scholar 

  • Marode, E., and J. P. Boeuf, 1983, in “Proceedings of the XVI International Conference on the Physics of Ionized Gases, invited talks,” W. Botticher, H. Wenk, and E. Schulz-Guide, ( Eds. ), p. 206.

    Google Scholar 

  • Mason, E. A., and E. W. McDaniel, 1988, “Transport Properties of Ions in Gases,” John Wiley and Sons, Inc., New York.

    Book  Google Scholar 

  • Moratz, T. J., L. C. Pitchford, and J. N. Bardsley, 1987, J. Appl. Phys. 61, 2146.

    Article  CAS  Google Scholar 

  • Morgan, W. L., and L. Vriens, 1980, J. Appl. Phys. 51, 5300.

    Article  CAS  Google Scholar 

  • Muller, K. G., 1962, Z. Phys. 169, 432.

    Article  Google Scholar 

  • Phelps, A. V., 1983, in “Electrical Breakdown and Discharges in Gases,” E. E. Kunhardt, and L. L. Luessen, (Eds.), Plenum, New York.

    Google Scholar 

  • Phelps, A. V., B. M. Jelenkovic, and L. C. Pitchford, 1987, Phys. Rev. A 36, 5327.

    Article  CAS  Google Scholar 

  • Pitchford, L. C., S. V. O’Neil, and J. R. Rumble, Jr., 1981, Phys. Rev. A 23, 294.

    Article  CAS  Google Scholar 

  • Pitchford, L. C., 1985, Technical Report No. AFWAL-TR-85-2016.

    Google Scholar 

  • Ponomarenko, A. G., V. N. Tishchenko, and V. A. Shveigert, 1985, Sov. J., Plasma Phys. 11, 288.

    Google Scholar 

  • Ségur, P., M. Yousfi, J. P. Boeuf, E. Marode, A. J. Davies, and C. J. Evans, 1983, in “Electrical Breakdown and Discharges in Gases,” E. E. Kunhardt, and L. L. Luessen, (Eds.), Plenum, New York.

    Google Scholar 

  • Ségur, P., M. Yousfi, M. H. Kadri, and M. C. Bordage, 1986, Transport Theory and Stat. Phys. 15, 705.

    Google Scholar 

  • Skullerud, H. R., 1968, J. Phys. D 1, 1567.

    Article  Google Scholar 

  • Vriens, L., R. A. J. Keijser, and F. A. S. Ligthart, 1978, J. Appl. Phys. 49, 3807.

    Article  CAS  Google Scholar 

  • Wilhelm, J., and R. Winkler, 1979, J. de Phys. C7, 251.

    Google Scholar 

  • Winkler, R., G. L. Braglia, A. Hess, and J. Wilhelm, 1984, Beitr. Plasma Phys. 24, 657.

    Article  CAS  Google Scholar 

  • Yee, J. H., R. A. Alvarez, D. J. Mayhall, D. P. Byrne, and J. DeGroot, 1986, Phys. Fluids 29, 1238.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Pitchford, L.C., Boeuf, J.P., Ségur, P., Marode, E. (1990). Non-Equilibrium Electron Transport: A Brief Overview. In: Gallagher, J.W., Hudson, D.F., Kunhardt, E.E., Van Brunt, R.J. (eds) Nonequilibrium Effects in Ion and Electron Transport. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0661-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0661-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7915-0

  • Online ISBN: 978-1-4613-0661-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics