TERPSICHORE: A Three-Dimensional Ideal Magnetohydrodynamic Stability Program

  • David V. Anderson
  • W. Anthony Cooper
  • Ralf Gruber
  • Silvio Merazzi
  • Ulrich Schwenn

Abstract

The 3D ideal magnetohydrodynamic (MHD) stability code TERPSICHORE has been designed to take advantage of vector and microtasking capabilities of the latest generation CRAY computers. To keep the number of operations small most efficient algorithms have been applied in each computational step. The program investigates the stability properties of fusion reactor relevant plasma configurations confined by magnetic fields. For a typical 3D HELIAS configuration that has been considered we obtain an overall performance of 1.7 Gflops on an eight processor CRAY-YMP machine.

Keywords

Incompressibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Gruber, F. Troyon, D. Berger, L.C. Bernard, S. Rousset, R. Schreiber, W. Kerner, W. Schneider and K.V. Roberts, ‘ERATO stability code’, Comput. Phys. Commun. 21:323–371 (1981).ADSCrossRefGoogle Scholar
  2. R. Gruber, S. Semenzato, F. Troyon, T. Tsunematsu, W. Kerner, P. Merkel and W.Schneider, ‘HERA and other extentions of ERATO’, Comput. Phys. Commun. 24:363–376 (1981).ADSCrossRefGoogle Scholar
  3. 2.
    R.C. Grimm, J.M. Greene and J.L. Johnson, ‘Computation of the MHD spectrum in axisymmetric toroidal confinement systems’, Meth. Comput. Phys. 16:253–280 (1976).Google Scholar
  4. 3.
    J. Manickam, R.C. Grimm, R.L. Dewar, ‘The linear stability analysis of MHD models in axisymmetric toroidal geometry’, Comput. Phys. Commun. 24:355–361 (1981).ADSCrossRefGoogle Scholar
  5. 4.
    L.M. Degtyarev, S.Yu. Medvedev, ‘Methods for numerical simulation of ideal MHD stability of axisymmetric plasmas’, Comput. Phys. Commun. 43:29–56 (1986).MathSciNetADSCrossRefMATHGoogle Scholar
  6. 5.
    R. Gruber, J. Rappaz, Finite element methods in linear ideal MHD, Springer Series in Computational Physics, Springer Verlag, Heidelberg (1985) ISBN 3–540-13398–4Google Scholar
  7. 6.
    F. Troyon, R. Gruber, H. Saurenmann, S. Semenzato and S. Succi, ‘MHD limits to plasma confinement’, Plasma Phys. 26:209–215 (1984).Google Scholar
  8. 6.
    F. Troyon and R. Gruber, ‘A scaling law for the beta-limit in Tokamaks’, Phys. Letters 110A:29–34 (1985).ADSGoogle Scholar
  9. 7.
    D.V. Anderson, W.A. Cooper, U. Schwenn and R. Gruber, ‘Linear MHD stability analysis of toroidal 3-D equilibria with TERPSICHORE’, in Proceedings of the Joint Varenna-Lausanne International Workshop on theory of fusion plasmas, Editrice Compositori, Bologna (1988), 93–102.Google Scholar
  10. 8.
    D.Y. Anderson, A.R. Fry, R. Gruber and A. Roy, ‘Gigaflop speed algorithm for the direct solution of large block-tridiagonal systems in 3-D physics applications’, Computers in Physics 3:33–41 (1989).ADSGoogle Scholar
  11. 9.
    S.P. Hirshman, W.I. van Rij and P. Merkel, ‘Three-dimensional free boundary calculations using a spectral Green’s function method’, Comput. Phys. Commun. 43:143 (1986).ADSCrossRefGoogle Scholar
  12. 9.
    S.P. Hirshman, U. Schwenn and J. Nührenberg, ‘Improved radial differencing for 3D MHD equilibrium calculations’, to be published in J. Comput. Phys. (1989).Google Scholar
  13. 10.
    J. Nührenberg, R. Zille, ‘Equilibrium and stability of low-shear stellarators’, in Proceedings of the Workshop on theory of fusion plasmas, Editrice Compositori, Bologna (1987), EUR11336EN, 3–23Google Scholar
  14. 11.
    J. Nührenberg, R. Zille, ‘Stable stellarators with medium ß and aspect ratio’, Phys. Letters 114A:129–132 (1986).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • David V. Anderson
    • 1
    • 2
  • W. Anthony Cooper
    • 1
    • 3
  • Ralf Gruber
    • 1
  • Silvio Merazzi
    • 1
  • Ulrich Schwenn
    • 1
    • 4
  1. 1.GASOV-EPFLLausanneSwitzerland
  2. 2.NMFECCLivermoreUSA
  3. 3.CRPP-EPFLLausanneSwitzerland
  4. 4.MP-IPPGarchingBRD

Personalised recommendations