Skip to main content

The Use of Transputers in Quantum Chemistry

  • Chapter
Book cover Scientific Computing on Supercomputers II

Abstract

Quantum chemistry is one of the areas in natural sciences that is most closely related to the development of computers. The several methods to approximately solve the basic equations describing the electronic structure of atoms, molecules and solids (e.g. the Schrödinger equation), all have in common the large amount of computational expense. For ab-initio methods, that is for methods that do not use parameters fitted to experimental data, this expense is proportional to about n 3 (density functionals), n 4 (Hartree-Fock) or even n 5 (configuration interaction (CI)), where n is a quantity related to the accuracy of the calculation and to the size of the problem treated. Looking at this n dependency we understand, why very powerful computers are necessary to envisage reasonable problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.R. Saunders and M.F. Guest, Comp. Phys. Comm. 26:389–395 (1982).

    Article  ADS  Google Scholar 

  2. R. Ahlrichs, H.-J. Böhm, C. Ehrhardt, P. Scharf, H. Schiffer, H. Lischka and M. Schindler, Journ. of Comp. Chem. 6:200–208 (1985).

    Article  Google Scholar 

  3. W. Kutzelnigg, M. Schindler, W. Klopper, S. Koch, U. Meier and H. Wallmeier, in Supercomputer Simulations in Chemistry, M. Dupuis, ed., Springer, Berlin (1986), p. 55–74 (Lecture notes in chemistry 44).

    Google Scholar 

  4. U. Wedig, A. Burkhardt, and H.-G. von Schnering, Z. Phys. D–Atoms, Molecules and Clusters 13:377–384 (1989).

    Article  ADS  Google Scholar 

  5. M.E. Colvin, Ph. D. thesis LBL--23578, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (1986).

    Google Scholar 

  6. R.A. Whiteside, J.S. Binkley, M.E. Colvin, and H.F. Schaefer III, Journ. Chem. Phys. 86:2185–2193 (1987).

    Article  ADS  Google Scholar 

  7. E. Clementi, Philos. Trans. R. Soc. London A326:445–470 (1988).

    Article  ADS  Google Scholar 

  8. E. Clementi, G. Corongiu, J. Detrich, S. Chin and L. Domingo, Int. Journ. Quantum Chem.: Quantum Chem. Symp. 18:601–618 (1984).

    Article  Google Scholar 

  9. M. Dupuis and J.D. Watts, Theor. Chim. Acta 71:91–103 (1987).

    Article  Google Scholar 

  10. M.F. Guest, R.J. Harrison, J.H. van Lenthe and L.C.H. van Corler, Theor. Chim. Acta 71:117–148 (1987).

    Article  Google Scholar 

  11. D.A. Buell, et al., The Journal of Supercomputing 1:301–325 (1988).

    Article  Google Scholar 

  12. INMOS Ltd., The Transputer Family 1987, INMOS Product Information, INMOS, Bristol (1987).

    Google Scholar 

  13. INMOS Ltd., OCCAM 2 Reference Manual, Prentice Hall, London (1988). (Prentice Hall International Series in Computer Science).

    Google Scholar 

  14. A.J.G. Hey, Comp. Phys. Comm. 50:23–31 (1988).

    Article  ADS  Google Scholar 

  15. A.J.G. Hey, Comp. Phys. Comm. 56:1–24 (1989).

    Article  ADS  Google Scholar 

  16. MultiTool 5.0, Parsytec Ltd., Aachen.

    Google Scholar 

  17. Perihelion Software Ltd., The Helios Operating System, Prentice Hall, London (1989).

    Google Scholar 

  18. Helios file system, version 1.1, Parsytec Ltd., Aachen.

    Google Scholar 

  19. I. Glendinning and A. Hey, Comp. Phys. Comm. 45:367–371 (1987).

    Article  ADS  Google Scholar 

  20. J. Almlöf, K. Faegri Jr. and K. Korsell, Journ. of Comp. Chem. 3:385–399 (1982).

    Article  Google Scholar 

  21. J. Almlöf, and P.R. Taylor, in Advanced Theories and Computational Approaches to the Electronic Structure of Molecules, C.E. Dykstra, ed., Reidel, Dordrecht, (1984), 107–125. (NATO ASI series C 133).

    Google Scholar 

  22. D. Cremer and J. Gauss, Journ. of Comp. Chem. 7:274–282 (1986).

    Article  Google Scholar 

  23. M. Häser, and R. Ahlrichs, Journ. of Comp. Chem. 10:104–111 (1989).

    Article  Google Scholar 

  24. L. McMurchie, S.T. Elbert, S.R. Langhoff, E.R. Davidson, et al., Program MELD (University of Washington, Seattle). Modified version: U. Wedig.

    Google Scholar 

  25. L.E. McMurchie and E.R. Davidson, Journ. of Comp. Phys. 26:218 (1978).

    Article  ADS  Google Scholar 

  26. M. Bar, Diploma Thesis, University of Karlsruhe (1988).

    Google Scholar 

  27. S. Obara and A. Saika, Journ. Chem. Phys. 84:3963–3974 (1986).

    Article  ADS  Google Scholar 

  28. R. Allan, Parallelogram 2(21): 17 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Wedig, U., Burkhardt, A., von Schnering, H.G. (1990). The Use of Transputers in Quantum Chemistry. In: Devreese, J.T., Van Camp, P.E. (eds) Scientific Computing on Supercomputers II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0659-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0659-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7914-3

  • Online ISBN: 978-1-4613-0659-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics