Skip to main content

Three-Dimensional Clustering on Surfaces: Overlayers on Si

  • Chapter
Kinetics of Ordering and Growth at Surfaces

Part of the book series: NATO ASI Series ((NSSB,volume 239))

Abstract

Heteroepitaxy, the formation of crystalline, layered structures of different materials, is the driving force for a large part of current solid state science. Most heteroepitaxial applications require and assume a uniform two-dimensional planar structure, based on the simplest film growth concepts. Nevertheless, the propensity for three-dimensional nucleation is a strong element in film formation. In this paper we describe our recent work in studies of clustering for overlayers on Si. Our studies consider the set of adsorbates, Ge, Sn and Ga on substrates of Si, GaAs and As terminated Si surfaces. The use of the As terminated surface permits an interesting transition between the two primary semiconductors. We show that the kinetics of cluster growth is well described by ripening processes, which can, in turn, be thought of as special cases of scaling laws predicted by self-similarity concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. P. Pearsall, J. Bevk, L. C. Feldman, J. M. Bonar, J. P. Mannaerts and A. Ourmazd, Phys. Rev. Lett. 58, 729 (1987).

    Article  ADS  Google Scholar 

  2. M. H. Grabow and G. H. Gilmer, in Semiconductor-based Heterostructures: Interfacial Structure and Stability. L. Green, J. E. E. Baglin, G. Y. Chin, H. W. Deckman, W. Mayo and D. Narasinham eds., (Metallurgical Society, Warrendale, PA, 1986), p. 3.

    Google Scholar 

  3. L. C. Feldman, J. Bevk, B. A. Davidson, H.-J. Gossmann, A. Ourmazd, T. P. Pearsall and M. Zinke-Allmang, Mat. Res. Soc. Symp. Proc. 102, 405 (1988).

    Article  Google Scholar 

  4. M. Zinke-Allmang, L. C. Feldman and S. Nakahara, Appl. Phys. Lett. 51 975 (1987); M. Zinke-Allmang, L. C. Feldman, S. Nakahara and B. A. Davidson, Phys. Rev. B39, 7848 (1989).

    Article  ADS  Google Scholar 

  5. J. H. van der Merwe, in Single Crystal Films. M. H. Francombe and H. Sato eds., (Pergamon, Oxford, 1964), p. 139.

    Google Scholar 

  6. J. W. Mathews, in Epitaxial Growth. Part 2, J. W. Mathews ed., (Academic Press, New York, 1975), p. 559.

    Google Scholar 

  7. J. C. Bean, T. T. Sheng, L. C. Feldman, A. T. Fiory and R. T. Lynch, Appl. Phys. Lett. 44, 102 (1984).

    Article  ADS  Google Scholar 

  8. K. Binder and D. Stauffer, Adv. Phys. 25, 343 (1976).

    Article  ADS  Google Scholar 

  9. R. Bruinsma and A. Zangwill, Europhys. Lett. 4, 729 (1987).

    Article  ADS  Google Scholar 

  10. M. von Smoluchowski, Z. Phys. Chem. 92, 129 (1918); see also J. T. G. Overbeek, in Colloid Science, vol. 1, H. R. Kruyt ed., (Elsevier, London, 1952), p. 278.

    Google Scholar 

  11. I. M. Lifshitz and V. V. Slyozov, Sov. Phys. JETP 35, 331 (1959); J. Phys. Chem. Solids 19, 35 (1961).

    Google Scholar 

  12. C. Wagner, Z. Elektrochem. 65, 581 (1961).

    Google Scholar 

  13. B. K. Chakraverty, J. Phys. Chem. Solids 28, 2401 (1967).

    Article  ADS  Google Scholar 

  14. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics (Wiley, New York), p. 185.

    Google Scholar 

  15. C. S. Lialikov, V. N. Piscounova, J. P. Chipilov and C. V. Cerdycev, Proc. 9th Int. Conf. on Photographic Science and Applications (Paris, 1935), p. 277.

    Google Scholar 

  16. J. Crank, in The Mathematics of Diffusion (Clarendon, Oxford, 1975).

    Google Scholar 

  17. W. W. Mullins, J. Appl. Phys. 59, 1341 (1986); W. W. Mullins and J. Vinals, Acta Metall. 37, 991 (1989).

    Article  ADS  Google Scholar 

  18. J. D. Gunton, in Kinetics of Interface Reactions. Vol. 8, M. Grunze and H. J. Kreuzer eds., (Springer Series in Surf. Sci., Berlin, 1987), p. 238.

    Google Scholar 

  19. Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall. 34, 2119 (1986), and references herein.

    Article  Google Scholar 

  20. D. Huse, Phys. Rev. B34 7845 (1986).

    ADS  Google Scholar 

  21. E. Bauer and H. Poppa, Thin Solid Films 12 167 (1972).

    Article  ADS  Google Scholar 

  22. L. C. Feldman and J. W. Mayer, in Fundamentals of Surface and Thin Film Analysis (Elsevier, New York, 1986).

    Google Scholar 

  23. J. A. Venables, J. Vac. Sci. Technol. B4, 870 (1986).

    Google Scholar 

  24. J. A. Kerr and A. F. Trotman-Dickenson, in Handbook of Chemistry and Physics. 57th Edition, R. C. Weast ed., (CRC Press, Cleveland, 1976), p. F–219.

    Google Scholar 

  25. M. A. Olmstead, R. D. Bringans, R. I. G. Uhrberg and R. Z. Bachrach, Phys. Rev. B34, 6041 (1986); R. I. G. Uhrberg, R. D. Bringans, M. A. Olmstead, R. Z. Bachrach and J. E. Northrup, Phys. Rev. B35 3945 (1987).

    ADS  Google Scholar 

  26. M. Zinke-Allmang, L. C. Feldman, J. R. Patel and J. C. Tully, Surf. Sci. 197, 1 (1988).

    Article  ADS  Google Scholar 

  27. R. L. Headrick and W. R. Graham, Phys. Rev. B37 1051 (1988); J. Vac. Sci. Technol. A6 637 (1988); M. Copel and R. M. Tromp, Phys. Rev. B37 2766 (1988).

    ADS  Google Scholar 

  28. K. Takayanagi, Y. Tanishiro, M. Takahashi and S. Takahashi, J. Vac. Sci. Technol. A3, 1502 (1985).

    ADS  Google Scholar 

  29. J. R. Patel, J. A. Golovchenko, P. E. Freeland and H.-J. Gossmann, Phys. Rev. B36, 7715 (1987).

    ADS  Google Scholar 

  30. M. Zinke-Allmang, L. C. Feldman and S. Nakahara, Appl. Phys. Lett. 52, 144 (1988).

    Article  ADS  Google Scholar 

  31. L. E. Murr in Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading MA, 1975), p. 101ff.

    Google Scholar 

  32. M. Zinke-Allmang, H.-J. Gossmann, L. C. Feldman and G. J. Fisanick, Mat. Res. Soc. Symp. Proc. 77, 703 (1987).

    Article  Google Scholar 

  33. M. Zinke-Allmang, L. C. Feldman and S. Nakahara, J. Vac. Sci. Technol. B6, 1137 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Zinke-Allmang, M., Feldman, L.C., Nakahara, S. (1990). Three-Dimensional Clustering on Surfaces: Overlayers on Si. In: Lagally, M.G. (eds) Kinetics of Ordering and Growth at Surfaces. NATO ASI Series, vol 239. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0653-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0653-5_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7911-2

  • Online ISBN: 978-1-4613-0653-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics