Advertisement

Kinetics in Molecular Beam Epitaxy — Modulated Beam Studies

  • C. T. Foxon
  • E. M. Gibson
  • J. Zhang
  • B. A. Joyce
Part of the NATO ASI Series book series (NSSB, volume 239)

Abstract

This article reviews the present state of our knowledge of the growth of III-V compounds gained from modulated beam mass spectrometry measurements. We have discussed in particular the data relating to the loss of volatile group III elements at high temperatures and have shown that there is much confusion in the literature in this area. New data for the loss of Ga at high temperatures both during Langmuir evaporation and during growth with both As2 and As4 has shown that the As species used is not a key factor in determining the loss of Ga during growth and that the presence of AI also does not influence the Ga loss rate during growth.

Keywords

Molecular Beam Epitaxy Desorption Rate Reflection High Energy Electron Diffraction GaAs Surface Sticking Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Arthur, J. Appl. Phys. 39, 4032 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    C. T. Foxon, M. R. Boudry and B. A. Joyce, Surf. Sci. 44, 69 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    P. J. Dobson, B. A. Joyce, J. H. Neave and J. Zhang, J. Crystal Growth, 81, 1 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    R. Heckingbottom, in Molecular Beam Epitaxy and Heterostructures. L. L. Chang and K. Ploog eds. (Martinus Nijhoff, Dordrecht, Holland, 719 (1967).Google Scholar
  5. 5.
    A. Madhukar, Surf. Sci. 132, 344 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    H. H. Farrell, J. P. Harbison and L. D. Peterson, J. Vacuum Sci. Technol. B5, 1482 (1987).ADSGoogle Scholar
  7. 7.
    R. H. Jones, D. R. Olander, W. J. Siekhaus and J. A. Schwarz, J. Vac. Sci. Technol. 9, 1429 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    J. A. Schwarz and R. J. Madix, Surf. Sci. 46, 317 (1974).ADSCrossRefGoogle Scholar
  9. 9.
    J. R. Arthur, J. Appl. Phys. 39, 4032 (1968).ADSCrossRefGoogle Scholar
  10. 10.
    J. R. Arthur, Surf. Sci. 43, 449 (1974).ADSCrossRefGoogle Scholar
  11. 11.
    C. T. Foxon and B. A. Joyce, Surf. Sci. 64, 293 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    C. T. Foxon and B. A. Joyce, Surf. Sci. 50, 434 (1975).ADSCrossRefGoogle Scholar
  13. 13.
    C. T. Foxon, J. Vac. Sci. Technol. B1, 293 (1983).Google Scholar
  14. 14.
    J. H. Neave, P. K. Larsen, J. F. van der Veen, P. J. Dobson and B. A. Joyce, Surf. Sci. 133, 267 (1983).ADSCrossRefGoogle Scholar
  15. 15.
    J. H. Neave, P. Blood, and B. A. Joyce, Appl. Phys. Lett. 36, 311 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    G. Duggan, P. Dawson, C. T. Foxon and G. W. ’t Hooft., J. de Phys. C5, 129 (1982).Google Scholar
  17. 17.
    C. T. Foxon, B. A. Joyce and M. T. Norris, J. Cryst. Growth. 49, 132 (1980).ADSCrossRefGoogle Scholar
  18. 18.
    Chin-An Chang, R. Ludeke, L. L. Chang and L. Esaki, Appl. Phys. Lett. 31, 759 (1977).ADSCrossRefGoogle Scholar
  19. 19.
    K. Woodbridge, J. P. Gowers and B. A. Joyce, J. Cryst. Growth 60, 21 (1982).ADSCrossRefGoogle Scholar
  20. 20.
    J. S. Johannessen, J. B. Clegg, C. T. Foxon and B. A. Joyce, Physica Scripta 24, 440 (1981).ADSCrossRefGoogle Scholar
  21. 21.
    C. T. Foxon and B. A. Joyce, J. Cryst. Growth 44, 75 (1978).ADSCrossRefGoogle Scholar
  22. 22.
    R. Z. Bachrach, R. S. Bauer, P. Chiaradia and G. V. Hansson, J. Vac. Sci. Technol. 19, 335 (1981).ADSCrossRefGoogle Scholar
  23. 23.
    R. A. Stall, J. Zilko, V. Swaminathan and N. Schumaker, J. Vac. Sci. Technol. B3, 524 (1985).Google Scholar
  24. 24.
    J. Massies, J. F. Rochette, and P. Delescluse, J. Vac. Sci. Technol. B3, 613 (1985).Google Scholar
  25. 25.
    J. Massies, F. Turco and J. P. Contour, Semicond. Sci. Technol. 2, 179 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    R. Heckingbottom, J. Vac. Sci. Technol. B3, 572 (1985).Google Scholar
  27. 27.
    R. E. Honig and D. A. Kramer, RCA Rev. 30, 285 (1969).Google Scholar
  28. 28.
    J. R. Arthur, J. Phys. Chem. Sol. 28, 2257 (1967).ADSCrossRefGoogle Scholar
  29. 29.
    C. T. Foxon, J. A. Harvey and B. A. Joyce, J. Phys. Chem. Sol. 34, 1693 (1973).ADSCrossRefGoogle Scholar
  30. 30.
    C. Pupp, J.J. Murray and R. F. Pottie, J. Chem. Therm. 6, 123 (1974).CrossRefGoogle Scholar
  31. 31.
    T. Kojima, N. J. Kawai, T. Nakagawa, K. Ohta, T. Sakamoto and M. Kawashima, Appl. Phys. Lett. 47, 286 (1985).ADSCrossRefGoogle Scholar
  32. 32.
    J. M. Van Hove and P. I. Cohen, Appl. Phys. Lett. 47, 725 (1985).Google Scholar
  33. 33.
    C. T. Foxon, J. Vac. Sci. Technol. B4, 867 (1986).Google Scholar
  34. 34.
    C. T. Foxon, in Heterojunctions and Semiconductor Superlattices. G. Allen, G. Bastard, N. Boceara, M. Lannoo and M. Voos, eds. Springer-Verlag, 216 (1986).Google Scholar
  35. 35.
    F. Alexandre, N. Duhamel, P. Ossart, J. M. Masson and C. Meillerat, J. de Phys. C5, 483 (1982).Google Scholar
  36. 36.
    R. Fischer, J. Klem, T. J. Drummond, R. E. Thome, W. Kopp, H. Morkoc and A. Y. Cho, J. Appl. Phys. 54, 2508 (1983).ADSCrossRefGoogle Scholar
  37. 37.
    A. J. SpringThorpe and P. Mandeville, J. Vac. Sci. Technol. B6, 754 (1988).Google Scholar
  38. 38.
    K. R. Evans, C. E. Stutz, D. K. Lorance and R. L. Jones, J. Vac. Sci. Technol. B7, 259 (1989).ADSGoogle Scholar
  39. 39.
    J. H. Neave, B. A. Joyce, and P. J. Dobson, Appl. Phys. A34, 179 (1984).ADSGoogle Scholar
  40. 40.
    E. M. Gibson, C. T. Foxon, J. Zhang and B. A. Joyce, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • C. T. Foxon
    • 1
  • E. M. Gibson
    • 2
  • J. Zhang
    • 2
  • B. A. Joyce
    • 2
  1. 1.Philips Research LaboratoriesRedhillEngland
  2. 2.Semiconductor Materials Interdisciplinary Research CentreThe Blackett Laboratory, Imperial CollegeLondonEngland

Personalised recommendations