Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 279))

Abstract

Rheumatoid arthritis (RA), a common and often disabling systemic disease with a predilection for joints, is characterized by an inflammatory and proliferative reaction of synovial cells associated with infiltration of immunocompetent cells and fluid into the synovial tissue, as well as the destruction of articular cartilage. Prostaglandins and related eicosanoids are thought to be important mediators and regulators of these immune and inflammatory responses (1, 2, 3). For example, prostaglandin E2 induces bone resorption, and leukotriene B4 stimulates vasodilitation and chemotaxis (1, 4). Increased quantities of eicosanoids are produced by rheumatoid synovium in both organ and cell culture (2, 5, 6) and by freshly isolated or cultured peripheral blood monocytes isolated from RA patients as compared to cells obtained from normal donors (7, 8, 9, 10). In addition, high concentrations of eicosanoids have been shown to be present in rheumatoid synovial fluid (2, 11, 12). Because eicosanoids are important mediators of this disease, numerous investigators have sought to understand the mechanisms of enhanced eicosanoid biosynthesis in this illness. The rate-limiting step in eicosanoid biosynthesis is the release of the precursor fatty acid from membrane phospholipids (4, 13, 14, 15, 16, 17). Once liberated, the unsaturated fatty acid, usually arachidonic acid, is then oxygenated to form prostaglandins, leukotrienes and related lipid metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bomalaski JS, Wiliamson PK, Zurier RB. Prostaglandins and the inflammatory response. Clin Lab Med 1983: 3:695–717.

    PubMed  CAS  Google Scholar 

  2. Klickstein LB, Shapleigh C, Goetzl EJ. Lipoxygenation of arachidonic acid as a source of polymorphonuclear leukocyte chemotactic factors in synovial fluid and tissue in rheumatoid arthritis and spondyloarthritis. J Clin Invest 1980; 66:1166–1170.

    Article  PubMed  CAS  Google Scholar 

  3. Krane SM, Goldring SR, Dayer J-M. Interactions among lymphocytes, monocytes, and other synovial cells in the rheumatoid synovium. Lvmphokines 1982; 7:75–136.

    CAS  Google Scholar 

  4. Samuelsson B, Dahlen S-E, Lindgren JA, Rouzer CA, Serhan CN. Leukotrienes and lipoxins: Structures, biosynthesis and biological effects. Science 1987; 237:1171–1175.

    Article  PubMed  CAS  Google Scholar 

  5. Robinson DR, Tashjian AH, Levine L. Prostaglandin stimulated bone resorbtion by rheumatoid synovium: a possible mechanism for bone destruction in rheumatoid arthritis. J Clin Inves 1975: 56:1181–1188.

    Article  CAS  Google Scholar 

  6. Salmon JA, Higgs GA, Vane JR, Bitensky L, Chayen J, Henderson B, Cashman B. Synthesis of arachidonate cyclooxygenase products by rheumatoid and non-rheumatoid synovial lining in nonproliferative organ culture. Ann Rheum Dis 1983; 42:36–39.

    Article  PubMed  CAS  Google Scholar 

  7. Bomalaski JS, Goldstein CS, Dailey AT, Douglas SD, Zurier RB. Uptake of fatty acids and their mobilization from phospholipids in cultured monocyte-macrophages from rheumatoid arthritis patients. Clin Immunol Immunopathol 1986; 39:198–212.

    Article  PubMed  CAS  Google Scholar 

  8. Dayer J-M, Trentham DE, David JR, Krane SM. Collagens stimulate the production of mononuclear cell factor and prostaglandins (PGE2) by human monocytes. Trans Assoc Am Phvcisians 1981; 93:326–335.

    Google Scholar 

  9. Dayer J-M, Trentham DE, Krane, SM. Collagens act as ligands to stimulate human moncytes to produce mononuclear cell factor and prostaglandins (PGE2). Coll Relat Res 1982; 2:523–540.

    PubMed  CAS  Google Scholar 

  10. Seitz M, Deimann W, Gram N, Hunstein W, Gemsa D. Characterization of blood mononuclear cells of rhematoid arthritis patients. I. Depressed lymphocyte proliferation and enhanced prostanoid release from monocytes. Clin Immunol Immunopathol 1982; 25:405–416.

    Article  PubMed  CAS  Google Scholar 

  11. Chang J, Gilman S, Lewis AJ. Interleukin −1 activates phospholipase A2 in rabbit chondrocytes: a possible signal for IL-1 action. J Immunol 1986; 136:1283–1287.

    PubMed  CAS  Google Scholar 

  12. Robinson DR, McGuire MB, Levin L. Prostaglandins in the rheumatic diseases. Ann NY Acad Sci 1974; 256:318–329.

    Article  Google Scholar 

  13. Dennis EA. Phospholipases. Enzymes 1983; 16:307–353.

    Article  CAS  Google Scholar 

  14. Dennis EA. Phospholipase A2 mechanism—inhibition and role in arachidonic acid cascade. Drug Dev R 1987; 10:205–220.54.

    Article  CAS  Google Scholar 

  15. Flower RJ, Blackwell GJ. The importance of phospholipase A2 in prostaglandin biosynthesis. Biochem Pharmacol 1976; 25:285–291.

    Article  PubMed  CAS  Google Scholar 

  16. Higgs GA, Flower RJ, Vane JR. A new approach to anti-inflammatory drugs. Biochem Pharmacol 1979; 28:1959–1961.

    Article  PubMed  CAS  Google Scholar 

  17. Waite M. Approaches to th estudy of mammaliam cellular phospholipases. J Lipid Res 1985: 26:1379–1388.

    PubMed  CAS  Google Scholar 

  18. Bomalaski JS, Clark MA, Zurier RB. Enhanced phospholipase activity in mononuclear phagocytes from patients with rheumatoid arthritis. Arthritis Rheum 1986; 29:312–318.

    Article  PubMed  CAS  Google Scholar 

  19. Bomalaski JS, Clark MA, Douglas SD, Zurier RB. Enhanced phospholipase A2 and C activities of peripheral blood poly-morphonuclear leukocytes from patients with rheumatoid arthritis. J Leuk Biol 1985; 38:649–654.

    CAS  Google Scholar 

  20. Pruzanski W, Vadas P, Stefanski E, Urowitz MB. Phospholipase A2 activity in sera and synovial fluids in rhematoid arthritis and osteoarthritis: its possible role as a proinflammatory enzyme. J Rheumatol 1985; 12:211–216.

    PubMed  CAS  Google Scholar 

  21. Hirata F, del Carmine R, Nelson CA, Axelrod J, SSchiffman E, Warabi A, deBlas A, Nirenberg M, Magnaniello V, Vaughn M, Kumagi S, Green I, Decker JL, Steinberg AD. Presence of autoantibody for phospholipase inhibitory protein, lipomodulin, in patients with rheumatic diseases. Proc Natl Acad Sci USA 1981; 78:3190–3194.

    Article  PubMed  CAS  Google Scholar 

  22. Haberman E. Bee and wasp venoms. Science 1972: 117:314–322.

    Article  Google Scholar 

  23. Hessinger DA, Lenhoff HM. Membrane structure and function: mechanism of hemolysis induced by nematocyst venom: roles of phospholipase A2 and direct lytic factor. Arch Biochem Biophvs 1976; 173:603–613.

    Article  CAS  Google Scholar 

  24. Rozengurt E, Gelehrter TD, Legg A, Pettican P. Melittin stimulates Na entry, Na-K pump activity and DNA synthesis in quiescent cultures of mouse cells. Cell 1981; 23:781–788.

    Article  PubMed  CAS  Google Scholar 

  25. Shier WT. Activation of high levels of endogenous phospholipase A2 in cultured cells. Proc Natl Acad Sci USA 1979; 76:195–199.

    Article  PubMed  CAS  Google Scholar 

  26. Bernheimer AW, Rudy B. Interactions between membranes and cytolytic peptides. Biochem Biophvs Acta 1986; 864:123–141.

    CAS  Google Scholar 

  27. Dufource RJ, Smith ICP, Dufource J. Molecular details of melittin-induced lysis of phospholipid membranes as revealed by deuterium and phosphorus NMR. Biochemistry 1986: 25:6448–6455.

    Article  Google Scholar 

  28. Kurihara H, Kitajima K, Senda T, Jujita H, Nakajima T. Multiglandular exocytosis induced by phospholipase A2 activators, melittin and mastoparan, ion rat anterior pituitary cells. Cell Tissue Res 1986; 243:311–316.

    Article  PubMed  CAS  Google Scholar 

  29. Weissmann G, Hischhorn R, Krakauer K. Effect of melittin upon cellular and lysosomal membranes. Biochem Pharmacol 1969: 18:1771–1775.

    Article  PubMed  CAS  Google Scholar 

  30. Clark MA, Chen M-J, Crooke ST, Bomalaski JS. Tumor necrosis factor (cachectin) induces phospholipase A2 activity and the synthesis of a phospholipase A2 activating protein (PLAP) in endothelial cells. Biochem J 1988: 250:125–132.

    PubMed  CAS  Google Scholar 

  31. Bomalaski JS, Baker DG, Brophy L, Resurreccion N, Spilberg I, Clark MA. A phospholipase A2 — activating protein (PALP) stimulates human neutrophil aggregation and release of synovial enzymes superoxide and eicosanoides. J Immunol 1989: 142: 3957–3962.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Bomalaski, J.S., Clark, M.A. (1990). Activation Of Phospholipase A2 in Rheumatoid Arthritis. In: Mukherjee, A.B. (eds) Biochemistry, Molecular Biology, and Physiology of Phospholipase A2 and Its Regulatory Factors. Advances in Experimental Medicine and Biology, vol 279. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0651-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0651-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7910-5

  • Online ISBN: 978-1-4613-0651-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics