Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 279))

Abstract

The title of this chapter was chosen to emphasize a point, namely, that PLs are classified as a group solely on the basis that they hydrolyze phospholipids. Beyond this commonality, this is a diverse group of enzymes, both in structure and in function.1 One or more of these enzymes have been described in almost every, if not all organisms analyzed for their presence. The sites of hydrolysis and nomenclature for the PLs are given in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Waite, The Phospholipases, in: “Handbook of Lipid Research,” D. J. Hanahan, ed., vol. 5, 332 pages, Plenum Publishing Corporation, New York (1987).

    Google Scholar 

  2. H. van den Bosch, A. J. Aarsman, A. J. Slotboom, andL. L. M. van Deenen, On the specificity of rat liver lysophospholipase Biochim. Biophys. Acta 164:215 (1968).

    PubMed  Google Scholar 

  3. R. M. Kramer, C. R. Pritzker, and D. Deykin, Coenzyme A-mediated arachidonic acid transacylation in human platelets, J. Biol. Chem. 259:2403 (1984).

    PubMed  CAS  Google Scholar 

  4. C. E. Walsh, M. Waite, M. J. Thomas, and L. R. DeChatelet, Release and metabolism of arachidonic acid in human neutrophils, J. Biol. Chem. 256:7228 (1981).

    PubMed  CAS  Google Scholar 

  5. M. R. Hokin, and L. E. Hokin, The role of phosphatidic acid and phosphoinositide in transmembrane transport elicited by acetylcholine and other humoral agents, Int. Rev. Neurobiol. 2:99 (1960).

    Article  PubMed  CAS  Google Scholar 

  6. L. W. Daniel, M. Waite, and R. L. Wykle, A novel mechanism of diglyceride formation: 12–0-tetradecanoyl-phorbol-13-acetate stimulates the cyclic breakdown and resynthesis of phosphatidylcholine J. Biol. Chem. 261:9128 (1986).

    PubMed  CAS  Google Scholar 

  7. J.-K. Pai, M. I. Siegel, R. W. Egan, and M. Billah, Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes, J. Biol. Chem. 263:12472 (1988).

    PubMed  CAS  Google Scholar 

  8. W. Siess, P. C. Weber, and E. G. Lapetina, Activation of phospholipase C is dissociated from arachidonate metabolism during platelet shape change induced by thrombin or platelet-activating factor: epinephrine does not induce phospholipase C activation or platelet shape change, J. Biol. Chem. 259:8286 (1984).

    PubMed  CAS  Google Scholar 

  9. S. F. Rittenhouse, Activation of human platelet phospholipase C by ionophore A23187 is totally dependent upon cyclo-oxygenase products and ADP, Biochem. J. 222:103 (1984).

    PubMed  CAS  Google Scholar 

  10. G. Lindblom, and L. Rilfors, Cubic phases and isotropic structures formed by membrane lipids — possible biological relevance, Biochim. Biophys. Acta 988:221 (1989).

    CAS  Google Scholar 

  11. H. B. M. Lenting, K. Nicolay, and H. van den Bosch, Regulatory aspects of mitochondrial phospholipase A2: correlation of hydrolysis rates with substrate configuration as evidenced by 31P-NMR, Biochim. Biophys. Acta 958:405 (1988).

    PubMed  CAS  Google Scholar 

  12. M. Robinson, and M. Waite, Physical-chemical requirements for the catalysis of substrates by lysosomal phospholipase A1 J. Biol. Chem. 258:14371 (1983).

    PubMed  CAS  Google Scholar 

  13. F. Pattus, A. J. Slotboom, and G. H. deHaas, Regulation of phospholipase A2 activity by the lipid-water interface: a monolayer approach, Biochemistry 18:2691 (1979).

    Article  PubMed  CAS  Google Scholar 

  14. M. C. Komaromy, and M. C. Schotz, Cloning of rat hepatic lipase cDNA: evidence for a lipase gene family, Proc. Natl. Acad. Sci. USA 84:1526 (1987)

    Article  PubMed  CAS  Google Scholar 

  15. T. Kuwae, P. C. Schmid, and H. H. O. Schmid, Assessment of phospholipid deacylation-reacylation cycles by a stable isotope technique, Biochem. Biophys. Res. Commun. 142:86 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. F. R. Cochran, V. L. Roddick, J. R. Connor, J. T. Thornburg, and M. Waite, Regulation of arachidonic acid metabolism in resident and BCG-activated macrophages: role of lyso(bis)phosphatidic acid, J. Immunol. 138:1877 (1987).

    PubMed  CAS  Google Scholar 

  17. N. Kawasaki, and K. Saito, Purification and some properties of lysophospholipase from Penicillium notatum, Biochim. Biophys. Acta 296:426 (1973).

    PubMed  CAS  Google Scholar 

  18. N. Kawasaki, J. Sugatani, and K. Saito, Studies on a phospholipase B from Penicillium notatum, J. Biochem. 77:1233 (1975).

    PubMed  CAS  Google Scholar 

  19. H. van den Bosch, Phospholipases, In: “Phospholipids,” J. N. Hawthorne and G. B. Ansell, eds., vol. 4, pp. 313–357, Elsevier Biomedical, Amsterdam (1982).

    Google Scholar 

  20. K. Saito, and M. Kates, Substrate specificity of a highly-purified phospholipase B from Penicillium notatum, Biochim. Biophys. Acta 369:245 (1974).

    PubMed  CAS  Google Scholar 

  21. M. Waite, and P. Sisson, Studies on the substrate specificity of the phospholipase A1 of the plasma membrane of rat liver, J. Biol. Chem. 249:6401 (1974).

    PubMed  CAS  Google Scholar 

  22. R. W. Gross, and B. E. Sobel, Rabbit myocardial cytosolic lysophospholipase: purification, characterization, and competitive inhibition by L-palmitoyl carnitine, J. Biol. Chem. 258:5221 (1983).

    PubMed  CAS  Google Scholar 

  23. R. W. Gross, R. C. Drisdel, and B. E. Sobel, Rabbit myocardial lysophospholipase-transacylase: purification, characterization, and inhibition by endogenous cardiac amphiphiles, J. Biol. Chem. 258:15165 (1983).

    PubMed  CAS  Google Scholar 

  24. A. J. Slotboom, H. M. Verheij, and G. H. deHaas, On the mechanism of phospholipase A2, in: “Phospholipids,” J. N. Hawthorne and G. B. Ansell, eds., vol. 4, ch. 10, pp. 359–434, Elsevier Biomedical, Amsterdam (1982).

    Google Scholar 

  25. R. L. Heinrikson, E. T. Krueger, and P. S. Keim, Amino acid sequence of phospholipase A2-α from the venom of Crotalus adamanteus: a new classification of phospholipase A2 based upon structural determinants, J. Biol. Chem. 252:4913 (1977).

    PubMed  CAS  Google Scholar 

  26. H. Tojo, T. Ono, S. Kuramitsu, H. Kagamiyama, and M. Okamoto, A phospholipase A2 in the supernatant fraction of rat spleen: its similarity to rat pancreatic phospholipase A2, J. Biol. Chem. 263:5724(1988)

    PubMed  CAS  Google Scholar 

  27. T. Ono, H. Tojo, S. Kuramitsu, H. Kagamiyama, and M. Okamoto, Purification and characterization of a membrane-associated phospholipase A2 from rat spleen: its comparison with a cytosolic phospholipase A2 S-1, J. Biol. Chem. 263:5732 (1988).

    PubMed  CAS  Google Scholar 

  28. O. Ohara, M. Tamaki, E. Nakamura, Y. Tsuruta, Y. Fujii, M. Shin, H. Teraoka, and M. Okamoto, Dog and rat pancreatic phospholipases A2: complete amino acid sequences deduced from complementary DNAs, J. Biochem. 99:733 (1986).

    PubMed  CAS  Google Scholar 

  29. H. Tojo, T. Ono, and M. Okamoto, A pancreatic-type phospholipase A2 in rat gastric mucosa, Biochem. Biophys. Res. Commun. 151:1188 (1988).

    Article  PubMed  CAS  Google Scholar 

  30. A. J. Aarsman, J. G. N. deJong, E. Arnoldussen, F. W. Neys, P. D. van Wassenaar, and H. van den Bosch, Immunoaffinity purification, partial sequence, and subcellular localization of rat liver phospholipase A2, J. Biol. Chem. 264:10008 (1989).

    PubMed  CAS  Google Scholar 

  31. S. Hara, I. Kudo, K. Matsuta, T. Miyamoto, and K. Inoue, Amino acid composition and NH2-terminal amino acid sequence of human phospholipase A2 purified from rheumatoid synovial fluid, J. Biochem. 104:326 (1988).

    PubMed  CAS  Google Scholar 

  32. R. M. Kramer, C. Hess ion, B. Johansen, G. Hayes, P. McGray, E. P. Chow, R. Tizard, and R. B. Pepinsky, Structure and properties of a human non-pancreatic phospholipase A2, J. Biol. Chem. 264:5768 (1989).

    PubMed  CAS  Google Scholar 

  33. C.-Y. Lai, and K. Wada, Phospholipase A2 from human synovial fluid: purification and structural homology to the placental enzyme, Biochem. Biophys. Res. Commun. 157:488 (1988).

    Article  PubMed  CAS  Google Scholar 

  34. J. J. Seilhamer, T. L. Randall, M. Yamanaka, and L. K. Johnson, Pancreatic phospholipase A2: isolation of the human gene and cDNAs from porcine pancreas and human lung, DNA 5:519 (1986).

    Article  PubMed  CAS  Google Scholar 

  35. H. M. Verheij, J. Westerman, B. Sternby, and G. H. deHaas, The complete primary structure of phospholipase A2 from human pancreas, Biochim. Biophys. Acta 747:93 (1983).

    Article  PubMed  CAS  Google Scholar 

  36. H. W. Chang, I. Kudo, M. Tomita, and K. Inoue, Purification and characterization of extracellular phospholipase A2 from peritoneal cavity of caseinate-treated rat, J. Biochem. 102:147 (1987)

    PubMed  CAS  Google Scholar 

  37. M. Hayakawa, K. Horigome, I. Kudo, M. Tomita, S. Nojima, and K. Inoue, Amino acid composition and NH2-terminal amino acid sequence of rat platelet secretory phospholipase A2, J. Biochem. 101:1311 (1987).

    PubMed  CAS  Google Scholar 

  38. H. Mizushima, I. Kudo, K. Horigome, M. Murakami, M. Hayakawa, D.-K. Kim, E. Kondo, M. Tomita, and K. Inoue, Purification of rabbit platelet secretory phospholipase A2 and its characteristics, J. Biochem. 105:520 (1989).

    PubMed  CAS  Google Scholar 

  39. S. Forst, J. Weiss, and P. Elsbach, Structural and functional properties of a phospholipase A2 purified from an inflammatory exudate, Biochemistry 25:8381 (1986).

    Article  PubMed  CAS  Google Scholar 

  40. G. C. Wright, C. E. Ooi, J. Weiss, and P. Elsbach, Purification of a cellular (granulocyte) and an extracellular (serum) phospholipase A2 that participate in the destruction of Escherichia coli in a rabbit inflammatory exudate, J. Biol. Chem., submitted (1989).

    Google Scholar 

  41. M. J. Dufton, and R. C. Hider, Classification of phospholipases A2 according to sequence: evolutionary and pharmacological implications, Eur. J. Biochem 137:5454 (1983).

    Google Scholar 

  42. C. J. van den Bergh, A. J. Slotboom, H. M. Verheij, and G. H. deHaas, The role of aspartic acid-49 in the active site of phospholipase A2: a site-specific mutagenesis study of porcine pancreatic phospholipase A2 and the rationale of the enzymatic activity of [ lysine49 ]-phospholipase A2 Agkistrodon piscivorus piscivorus’ venom, Eur. J. Biochem. 176:353 (1988).

    Article  PubMed  Google Scholar 

  43. C. J. van den Bergh, A. C. A. P. A. Bekkers, H. M. Verheij, and G. H. deHaas, Glutamic acid 71 and aspartic acid 66 control the binding of the second calcium ion in porcine pancreatic phospholipase A2, Eur. J. Biochem. 182:307 (1989).

    Article  PubMed  Google Scholar 

  44. P. Kuipers, R. Dijkman, C. E. G. M. Pals, H. M. Verheij, and G. H. deHaas, Evidence for the involvement of tyrosine-69 in the control of stereospecificity of porcine pancreatic phospholipase A2, Protein Engr. 2:467 (1989).

    Article  CAS  Google Scholar 

  45. P. Kuipers, M. M. G. M. Thunnissen, P. deGeus, B. W. Dijkstra, J. Drenth, H. M. Verheij, and G. H. deHaas, Enhanced activity and altered specificity of phospholipase A2 by deletion of a surface loop, Science 244:82 (1989).

    Article  PubMed  CAS  Google Scholar 

  46. L. A. Loeb, and R. W. Gross, Identification and purification of sheep platelet phospholipase A2 isoforms: activation by physiologic concentrations of calcium ion, J. Biol. Chem. 261:10467 (1986).

    PubMed  CAS  Google Scholar 

  47. Y. Suwa, I. Kudo, M. Okada, A. Imaizumi, Y. Suzuki, H. W. Chang, and K. Inoue, Novel proteinous inhibitors of phospholipase A2 purified from rat inflamed sites, submitted (1989).

    Google Scholar 

  48. F. F. Davidson, E. A. Dennis, M. Powell, and J. Glenney, Inhibition of phospholipase A2 by “lipocortins” and calpactins: an effect of binding to substrate phospholipids, J. Biol. Chem. 262:1698 (1987).

    PubMed  CAS  Google Scholar 

  49. P. Elsbach, and J. Weiss, Phagocytosis of bacteria and phospholipid degradation, Biochim. Biophys. Acta 947:29 (1988).

    PubMed  CAS  Google Scholar 

  50. K. Aalmo, L. Hansen, E. Hough, K. Jynge, J. Krane, C. Little, and C. B. Storm, An anion binding site in the active centre of phospholipase C from Bacillus cereus, Biochem. Int. 8:27 (1984).

    PubMed  CAS  Google Scholar 

  51. D. P. Siegel, J. Banschbach, D. Alford, H. Ellens, L. J. Lis, P. J. Quinn, P. L. Yeagle, and J. Bentz, Physiological levels of diacylglycerols in phospholipid membranes induce membrane fusion and stabilize inverted phases, Biochemistry 28:3703 (1989).

    Article  PubMed  CAS  Google Scholar 

  52. S. G. Rhee, P.-G. Suh, S.-H. Ryu, and S. Y. Lee, Studies of inositol phospholipid-specific phospholipase C, Science 244:546 (1989).

    Article  PubMed  CAS  Google Scholar 

  53. R. A. Wolf, and R. W. Gross, Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium, J. Biol. Chem. 260:7296.

    Google Scholar 

  54. G. Augert, S. B. Bocckino, P. F. Blackmore, and J. H. Exton, Hormonal stimulation of diacylglycerol formation in hepatocytes: evidence for phosphatidylcholine breakdown, J. Biol. Chem., in press (1989).

    Google Scholar 

  55. A. H. Merrill, Lipid modulators of cell function, Nutr. Rev. 47:161 (1989).

    Article  PubMed  Google Scholar 

  56. R. N. Kolesnick, 1, 2-Diacylglycerols but not phorbol esters stimulate sphingomyelin hydrolysis in GH3 pituitary cells, J. Biol. Chem. 262:16759 (1987).

    PubMed  CAS  Google Scholar 

  57. R. N. Kolesnick, Sphingomyelinase action inhibits phorbol ester-induced differentiation of human promyelocytic leukemic (HL-60) cells, J. Biol. Chem. 264:7617 (1989).

    PubMed  CAS  Google Scholar 

  58. H. Ikezawa, M. Yamanegi, R. Taguchi, T. Miyashita, and T. Ohyabu, Studies on phosphatidylinositol phosphodiesterase (phospholipase C type) of Bacillus cereus. I. Purification, properties and phosphatase-releasing activity, Biochim. Biophys. Acta 450:154 (1976).

    PubMed  CAS  Google Scholar 

  59. M. G. Low, Degradation of glycosyl-phosphatidylinositol anchors by specific phospholipases, in: “Glycosylphosphatidylinositol Membrane Protein Anchors and Cell Signalling Events,” A. J. Turner, ed., ch. 2, Ellis Horwood Publ., U.K., in press (1989).

    Google Scholar 

  60. M. G. Low, and A. R. Saltiel, Structural and functional roles of glycosylphosphatidylinositol in membranes, Science 239:268 (1988).

    Article  PubMed  CAS  Google Scholar 

  61. R. Bulow, and P. Overath, Purification and characterization of the membrane-form variant surface glycoprotein hydrolase of Trypanosoma brucei, J. Biol. Chem. 261:11918 (1986).

    PubMed  CAS  Google Scholar 

  62. J. A. Fox, N. M. Soliz, and A. R. Saltiel, Purification of a phosphatidylinositol-glycan-specific phospholipase C from liver plasma membranes: a possible target of insulin action, Proc. Natl. Acad. Sci. USA 84:2663 (1987).

    Article  PubMed  CAS  Google Scholar 

  63. J. N. Kanfer, The base exchange enzymes and phospholipase D of mammalian tissue, Can. J. Biochem. 58:1370 (1980).

    Article  PubMed  CAS  Google Scholar 

  64. R. L. Wykle, and J. M. Schremmer, A lysophospholipase D pathway in the metabolism of ether-linked lipids in brain microsomes, J. Biol. Chem. 249:1742 (1974).

    PubMed  CAS  Google Scholar 

  65. S. B. Bocckino, P. F. Blackmore, P. B. Wilson, and J. H. Exton, Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism, J. Biol. Chem. 262:15309 (1987).

    PubMed  CAS  Google Scholar 

  66. M. A. Davitz, J. Horn, and S. Schenkman, Purification of a glycosylphosphatidylinositol-specific phospholipase D from human plasma, J. Biol. Chem. 264:13760 (1989).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Waite, M. (1990). Phospholipases, Enzymes That Share a Substrate Class. In: Mukherjee, A.B. (eds) Biochemistry, Molecular Biology, and Physiology of Phospholipase A2 and Its Regulatory Factors. Advances in Experimental Medicine and Biology, vol 279. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0651-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0651-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7910-5

  • Online ISBN: 978-1-4613-0651-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics