Phospholipases, Enzymes That Share a Substrate Class

  • Moseley Waite
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 279)

Abstract

The title of this chapter was chosen to emphasize a point, namely, that PLs are classified as a group solely on the basis that they hydrolyze phospholipids. Beyond this commonality, this is a diverse group of enzymes, both in structure and in function.1 One or more of these enzymes have been described in almost every, if not all organisms analyzed for their presence. The sites of hydrolysis and nomenclature for the PLs are given in Fig. 1.

Keywords

Hydrolysis Bacillus Disulfide Pseudomonas Choline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Waite, The Phospholipases, in: “Handbook of Lipid Research,” D. J. Hanahan, ed., vol. 5, 332 pages, Plenum Publishing Corporation, New York (1987).Google Scholar
  2. 2.
    H. van den Bosch, A. J. Aarsman, A. J. Slotboom, andL. L. M. van Deenen, On the specificity of rat liver lysophospholipase Biochim. Biophys. Acta 164:215 (1968).PubMedGoogle Scholar
  3. 3.
    R. M. Kramer, C. R. Pritzker, and D. Deykin, Coenzyme A-mediated arachidonic acid transacylation in human platelets, J. Biol. Chem. 259:2403 (1984).PubMedGoogle Scholar
  4. 4.
    C. E. Walsh, M. Waite, M. J. Thomas, and L. R. DeChatelet, Release and metabolism of arachidonic acid in human neutrophils, J. Biol. Chem. 256:7228 (1981).PubMedGoogle Scholar
  5. 5.
    M. R. Hokin, and L. E. Hokin, The role of phosphatidic acid and phosphoinositide in transmembrane transport elicited by acetylcholine and other humoral agents, Int. Rev. Neurobiol. 2:99 (1960).PubMedCrossRefGoogle Scholar
  6. 6.
    L. W. Daniel, M. Waite, and R. L. Wykle, A novel mechanism of diglyceride formation: 12–0-tetradecanoyl-phorbol-13-acetate stimulates the cyclic breakdown and resynthesis of phosphatidylcholine J. Biol. Chem. 261:9128 (1986).PubMedGoogle Scholar
  7. 7.
    J.-K. Pai, M. I. Siegel, R. W. Egan, and M. Billah, Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes, J. Biol. Chem. 263:12472 (1988).PubMedGoogle Scholar
  8. 8.
    W. Siess, P. C. Weber, and E. G. Lapetina, Activation of phospholipase C is dissociated from arachidonate metabolism during platelet shape change induced by thrombin or platelet-activating factor: epinephrine does not induce phospholipase C activation or platelet shape change, J. Biol. Chem. 259:8286 (1984).PubMedGoogle Scholar
  9. 9.
    S. F. Rittenhouse, Activation of human platelet phospholipase C by ionophore A23187 is totally dependent upon cyclo-oxygenase products and ADP, Biochem. J. 222:103 (1984).PubMedGoogle Scholar
  10. 10.
    G. Lindblom, and L. Rilfors, Cubic phases and isotropic structures formed by membrane lipids — possible biological relevance, Biochim. Biophys. Acta 988:221 (1989).Google Scholar
  11. 11.
    H. B. M. Lenting, K. Nicolay, and H. van den Bosch, Regulatory aspects of mitochondrial phospholipase A2: correlation of hydrolysis rates with substrate configuration as evidenced by 31P-NMR, Biochim. Biophys. Acta 958:405 (1988).PubMedGoogle Scholar
  12. 12.
    M. Robinson, and M. Waite, Physical-chemical requirements for the catalysis of substrates by lysosomal phospholipase A1 J. Biol. Chem. 258:14371 (1983).PubMedGoogle Scholar
  13. 13.
    F. Pattus, A. J. Slotboom, and G. H. deHaas, Regulation of phospholipase A2 activity by the lipid-water interface: a monolayer approach, Biochemistry 18:2691 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    M. C. Komaromy, and M. C. Schotz, Cloning of rat hepatic lipase cDNA: evidence for a lipase gene family, Proc. Natl. Acad. Sci. USA 84:1526 (1987)PubMedCrossRefGoogle Scholar
  15. 15.
    T. Kuwae, P. C. Schmid, and H. H. O. Schmid, Assessment of phospholipid deacylation-reacylation cycles by a stable isotope technique, Biochem. Biophys. Res. Commun. 142:86 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    F. R. Cochran, V. L. Roddick, J. R. Connor, J. T. Thornburg, and M. Waite, Regulation of arachidonic acid metabolism in resident and BCG-activated macrophages: role of lyso(bis)phosphatidic acid, J. Immunol. 138:1877 (1987).PubMedGoogle Scholar
  17. 17.
    N. Kawasaki, and K. Saito, Purification and some properties of lysophospholipase from Penicillium notatum, Biochim. Biophys. Acta 296:426 (1973).PubMedGoogle Scholar
  18. 18.
    N. Kawasaki, J. Sugatani, and K. Saito, Studies on a phospholipase B from Penicillium notatum, J. Biochem. 77:1233 (1975).PubMedGoogle Scholar
  19. 19.
    H. van den Bosch, Phospholipases, In: “Phospholipids,” J. N. Hawthorne and G. B. Ansell, eds., vol. 4, pp. 313–357, Elsevier Biomedical, Amsterdam (1982).Google Scholar
  20. 20.
    K. Saito, and M. Kates, Substrate specificity of a highly-purified phospholipase B from Penicillium notatum, Biochim. Biophys. Acta 369:245 (1974).PubMedGoogle Scholar
  21. 21.
    M. Waite, and P. Sisson, Studies on the substrate specificity of the phospholipase A1 of the plasma membrane of rat liver, J. Biol. Chem. 249:6401 (1974).PubMedGoogle Scholar
  22. 22.
    R. W. Gross, and B. E. Sobel, Rabbit myocardial cytosolic lysophospholipase: purification, characterization, and competitive inhibition by L-palmitoyl carnitine, J. Biol. Chem. 258:5221 (1983).PubMedGoogle Scholar
  23. 23.
    R. W. Gross, R. C. Drisdel, and B. E. Sobel, Rabbit myocardial lysophospholipase-transacylase: purification, characterization, and inhibition by endogenous cardiac amphiphiles, J. Biol. Chem. 258:15165 (1983).PubMedGoogle Scholar
  24. 24.
    A. J. Slotboom, H. M. Verheij, and G. H. deHaas, On the mechanism of phospholipase A2, in: “Phospholipids,” J. N. Hawthorne and G. B. Ansell, eds., vol. 4, ch. 10, pp. 359–434, Elsevier Biomedical, Amsterdam (1982).Google Scholar
  25. 25.
    R. L. Heinrikson, E. T. Krueger, and P. S. Keim, Amino acid sequence of phospholipase A2-α from the venom of Crotalus adamanteus: a new classification of phospholipase A2 based upon structural determinants, J. Biol. Chem. 252:4913 (1977).PubMedGoogle Scholar
  26. 26.
    H. Tojo, T. Ono, S. Kuramitsu, H. Kagamiyama, and M. Okamoto, A phospholipase A2 in the supernatant fraction of rat spleen: its similarity to rat pancreatic phospholipase A2, J. Biol. Chem. 263:5724(1988)PubMedGoogle Scholar
  27. 27.
    T. Ono, H. Tojo, S. Kuramitsu, H. Kagamiyama, and M. Okamoto, Purification and characterization of a membrane-associated phospholipase A2 from rat spleen: its comparison with a cytosolic phospholipase A2 S-1, J. Biol. Chem. 263:5732 (1988).PubMedGoogle Scholar
  28. 28.
    O. Ohara, M. Tamaki, E. Nakamura, Y. Tsuruta, Y. Fujii, M. Shin, H. Teraoka, and M. Okamoto, Dog and rat pancreatic phospholipases A2: complete amino acid sequences deduced from complementary DNAs, J. Biochem. 99:733 (1986).PubMedGoogle Scholar
  29. 29.
    H. Tojo, T. Ono, and M. Okamoto, A pancreatic-type phospholipase A2 in rat gastric mucosa, Biochem. Biophys. Res. Commun. 151:1188 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    A. J. Aarsman, J. G. N. deJong, E. Arnoldussen, F. W. Neys, P. D. van Wassenaar, and H. van den Bosch, Immunoaffinity purification, partial sequence, and subcellular localization of rat liver phospholipase A2, J. Biol. Chem. 264:10008 (1989).PubMedGoogle Scholar
  31. 31.
    S. Hara, I. Kudo, K. Matsuta, T. Miyamoto, and K. Inoue, Amino acid composition and NH2-terminal amino acid sequence of human phospholipase A2 purified from rheumatoid synovial fluid, J. Biochem. 104:326 (1988).PubMedGoogle Scholar
  32. 32.
    R. M. Kramer, C. Hess ion, B. Johansen, G. Hayes, P. McGray, E. P. Chow, R. Tizard, and R. B. Pepinsky, Structure and properties of a human non-pancreatic phospholipase A2, J. Biol. Chem. 264:5768 (1989).PubMedGoogle Scholar
  33. 33.
    C.-Y. Lai, and K. Wada, Phospholipase A2 from human synovial fluid: purification and structural homology to the placental enzyme, Biochem. Biophys. Res. Commun. 157:488 (1988).PubMedCrossRefGoogle Scholar
  34. 34.
    J. J. Seilhamer, T. L. Randall, M. Yamanaka, and L. K. Johnson, Pancreatic phospholipase A2: isolation of the human gene and cDNAs from porcine pancreas and human lung, DNA 5:519 (1986).PubMedCrossRefGoogle Scholar
  35. 35.
    H. M. Verheij, J. Westerman, B. Sternby, and G. H. deHaas, The complete primary structure of phospholipase A2 from human pancreas, Biochim. Biophys. Acta 747:93 (1983).PubMedCrossRefGoogle Scholar
  36. 36.
    H. W. Chang, I. Kudo, M. Tomita, and K. Inoue, Purification and characterization of extracellular phospholipase A2 from peritoneal cavity of caseinate-treated rat, J. Biochem. 102:147 (1987)PubMedGoogle Scholar
  37. 37.
    M. Hayakawa, K. Horigome, I. Kudo, M. Tomita, S. Nojima, and K. Inoue, Amino acid composition and NH2-terminal amino acid sequence of rat platelet secretory phospholipase A2, J. Biochem. 101:1311 (1987).PubMedGoogle Scholar
  38. 38.
    H. Mizushima, I. Kudo, K. Horigome, M. Murakami, M. Hayakawa, D.-K. Kim, E. Kondo, M. Tomita, and K. Inoue, Purification of rabbit platelet secretory phospholipase A2 and its characteristics, J. Biochem. 105:520 (1989).PubMedGoogle Scholar
  39. 39.
    S. Forst, J. Weiss, and P. Elsbach, Structural and functional properties of a phospholipase A2 purified from an inflammatory exudate, Biochemistry 25:8381 (1986).PubMedCrossRefGoogle Scholar
  40. 40.
    G. C. Wright, C. E. Ooi, J. Weiss, and P. Elsbach, Purification of a cellular (granulocyte) and an extracellular (serum) phospholipase A2 that participate in the destruction of Escherichia coli in a rabbit inflammatory exudate, J. Biol. Chem., submitted (1989).Google Scholar
  41. 41.
    M. J. Dufton, and R. C. Hider, Classification of phospholipases A2 according to sequence: evolutionary and pharmacological implications, Eur. J. Biochem 137:5454 (1983).Google Scholar
  42. 42.
    C. J. van den Bergh, A. J. Slotboom, H. M. Verheij, and G. H. deHaas, The role of aspartic acid-49 in the active site of phospholipase A2: a site-specific mutagenesis study of porcine pancreatic phospholipase A2 and the rationale of the enzymatic activity of [ lysine49 ]-phospholipase A2 Agkistrodon piscivorus piscivorus’ venom, Eur. J. Biochem. 176:353 (1988).PubMedCrossRefGoogle Scholar
  43. 43.
    C. J. van den Bergh, A. C. A. P. A. Bekkers, H. M. Verheij, and G. H. deHaas, Glutamic acid 71 and aspartic acid 66 control the binding of the second calcium ion in porcine pancreatic phospholipase A2, Eur. J. Biochem. 182:307 (1989).PubMedCrossRefGoogle Scholar
  44. 44.
    P. Kuipers, R. Dijkman, C. E. G. M. Pals, H. M. Verheij, and G. H. deHaas, Evidence for the involvement of tyrosine-69 in the control of stereospecificity of porcine pancreatic phospholipase A2, Protein Engr. 2:467 (1989).CrossRefGoogle Scholar
  45. 45.
    P. Kuipers, M. M. G. M. Thunnissen, P. deGeus, B. W. Dijkstra, J. Drenth, H. M. Verheij, and G. H. deHaas, Enhanced activity and altered specificity of phospholipase A2 by deletion of a surface loop, Science 244:82 (1989).PubMedCrossRefGoogle Scholar
  46. 46.
    L. A. Loeb, and R. W. Gross, Identification and purification of sheep platelet phospholipase A2 isoforms: activation by physiologic concentrations of calcium ion, J. Biol. Chem. 261:10467 (1986).PubMedGoogle Scholar
  47. 47.
    Y. Suwa, I. Kudo, M. Okada, A. Imaizumi, Y. Suzuki, H. W. Chang, and K. Inoue, Novel proteinous inhibitors of phospholipase A2 purified from rat inflamed sites, submitted (1989).Google Scholar
  48. 48.
    F. F. Davidson, E. A. Dennis, M. Powell, and J. Glenney, Inhibition of phospholipase A2 by “lipocortins” and calpactins: an effect of binding to substrate phospholipids, J. Biol. Chem. 262:1698 (1987).PubMedGoogle Scholar
  49. 49.
    P. Elsbach, and J. Weiss, Phagocytosis of bacteria and phospholipid degradation, Biochim. Biophys. Acta 947:29 (1988).PubMedGoogle Scholar
  50. 50.
    K. Aalmo, L. Hansen, E. Hough, K. Jynge, J. Krane, C. Little, and C. B. Storm, An anion binding site in the active centre of phospholipase C from Bacillus cereus, Biochem. Int. 8:27 (1984).PubMedGoogle Scholar
  51. 51.
    D. P. Siegel, J. Banschbach, D. Alford, H. Ellens, L. J. Lis, P. J. Quinn, P. L. Yeagle, and J. Bentz, Physiological levels of diacylglycerols in phospholipid membranes induce membrane fusion and stabilize inverted phases, Biochemistry 28:3703 (1989).PubMedCrossRefGoogle Scholar
  52. 52.
    S. G. Rhee, P.-G. Suh, S.-H. Ryu, and S. Y. Lee, Studies of inositol phospholipid-specific phospholipase C, Science 244:546 (1989).PubMedCrossRefGoogle Scholar
  53. 53.
    R. A. Wolf, and R. W. Gross, Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium, J. Biol. Chem. 260:7296.Google Scholar
  54. 54.
    G. Augert, S. B. Bocckino, P. F. Blackmore, and J. H. Exton, Hormonal stimulation of diacylglycerol formation in hepatocytes: evidence for phosphatidylcholine breakdown, J. Biol. Chem., in press (1989).Google Scholar
  55. 55.
    A. H. Merrill, Lipid modulators of cell function, Nutr. Rev. 47:161 (1989).PubMedCrossRefGoogle Scholar
  56. 56.
    R. N. Kolesnick, 1, 2-Diacylglycerols but not phorbol esters stimulate sphingomyelin hydrolysis in GH3 pituitary cells, J. Biol. Chem. 262:16759 (1987).PubMedGoogle Scholar
  57. 57.
    R. N. Kolesnick, Sphingomyelinase action inhibits phorbol ester-induced differentiation of human promyelocytic leukemic (HL-60) cells, J. Biol. Chem. 264:7617 (1989).PubMedGoogle Scholar
  58. 58.
    H. Ikezawa, M. Yamanegi, R. Taguchi, T. Miyashita, and T. Ohyabu, Studies on phosphatidylinositol phosphodiesterase (phospholipase C type) of Bacillus cereus. I. Purification, properties and phosphatase-releasing activity, Biochim. Biophys. Acta 450:154 (1976).PubMedGoogle Scholar
  59. 59.
    M. G. Low, Degradation of glycosyl-phosphatidylinositol anchors by specific phospholipases, in: “Glycosylphosphatidylinositol Membrane Protein Anchors and Cell Signalling Events,” A. J. Turner, ed., ch. 2, Ellis Horwood Publ., U.K., in press (1989).Google Scholar
  60. 60.
    M. G. Low, and A. R. Saltiel, Structural and functional roles of glycosylphosphatidylinositol in membranes, Science 239:268 (1988).PubMedCrossRefGoogle Scholar
  61. 61.
    R. Bulow, and P. Overath, Purification and characterization of the membrane-form variant surface glycoprotein hydrolase of Trypanosoma brucei, J. Biol. Chem. 261:11918 (1986).PubMedGoogle Scholar
  62. 62.
    J. A. Fox, N. M. Soliz, and A. R. Saltiel, Purification of a phosphatidylinositol-glycan-specific phospholipase C from liver plasma membranes: a possible target of insulin action, Proc. Natl. Acad. Sci. USA 84:2663 (1987).PubMedCrossRefGoogle Scholar
  63. 63.
    J. N. Kanfer, The base exchange enzymes and phospholipase D of mammalian tissue, Can. J. Biochem. 58:1370 (1980).PubMedCrossRefGoogle Scholar
  64. 64.
    R. L. Wykle, and J. M. Schremmer, A lysophospholipase D pathway in the metabolism of ether-linked lipids in brain microsomes, J. Biol. Chem. 249:1742 (1974).PubMedGoogle Scholar
  65. 65.
    S. B. Bocckino, P. F. Blackmore, P. B. Wilson, and J. H. Exton, Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism, J. Biol. Chem. 262:15309 (1987).PubMedGoogle Scholar
  66. 66.
    M. A. Davitz, J. Horn, and S. Schenkman, Purification of a glycosylphosphatidylinositol-specific phospholipase D from human plasma, J. Biol. Chem. 264:13760 (1989).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Moseley Waite
    • 1
  1. 1.Department of BiochemistryBowman Gray School of Medicine of Wake Forest UniversityWinston-SalemUSA

Personalised recommendations