Skip to main content

The Fountain Effect in Aerospace Cryogenics

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 35))

Abstract

A growing number of NASA scientific payloads are using stored liquid helium. Four have flown to date and more are scheduled for flight in 1989 and throughout the next decade. In all cases these payloads have flown or are planning to fly superfluid helium to take advantage of its greater cooling capacity per unit volume. The fountain effect, unique to superfluid helium, provides another important advantage since it can be used for fluid management in 0-g. To date the fountain effect, also called the thermomechanical effect, has been used to perform liquid-vapor phase separation, as in IRAS, IRT and COBE. Future users of superfluid in space will use the fountain effect for liquid-vapor phase separation; for pumping superfluid helium from a storage vessel to a payload, as in the Superfluid Helium On Orbit Transfer Flight Demonstration and the Superfluid Helium Tanker; for actuating a low temperature refrigerator called a vortex cooler; and for circulating liquid helium within a cryostat, as in the Astromag dewar. An introduction to the thermomechanical effect will be given and each particular application in aerospace cryogenics will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. R. Urbach and P. V. Mason, IRAS cryogenic system flight performance report, in: “Advances in Cryogenic Engineering”, Vol. 29, Plenum Press, New York (1984), p. 651.

    Google Scholar 

  2. E. W. Urban and D. R. Ladner, Comparison of I. R. telescope cryogenic performance - laboratory versus space, presented at Space Cryogenics Workshop, Madison, Wisconsin (1987).

    Google Scholar 

  3. P. V. Mason et al, Preliminary results of the Spacelab 2 superfluid helium experiment, in: “Advances in Cryogenic Engineering”, Vol. 31, Plenum Press, New York (1986), p. 869.

    Google Scholar 

  4. R. A. Hopkins and M. G. Ryschkewitsch, Measured ground performance and predicted orbital performance of the superfluid helium dewar for the Cosmic Background Explorer, in: “Cryogenic Optical Systems and Instruments 2: Proc. SPIE”, Los Angeles, California (1987), p. 134.

    Google Scholar 

  5. J. A. Lipa, Aerospace Century 21 (Advances in the Astronautical Sciences Ser.), Vol. 64, G. W. Morgenthaler et al. eds., Univelt, Inc., (1987), p. 1245.

    Google Scholar 

  6. M. DiPirro and P. Kittel, The superfluid helium on-orbit transfer (SHOOT) flight demonstration, in: “Advances in Cryogenic Engineering”, Vol. 33, Plenum Press, New York (1988), p. 893.

    Google Scholar 

  7. S. H. Castles, S. R. Breon, B. A. Warner, A. T. Serlemitsos, S. M. Volz, and M. G. Ryschkewitsch, The cryogenic subsystem for the X-Ray Spectrometer on Advanced X-Ray Astrophysics Facility (AXAF), in: “Cryogenic Optical Systems and Instruments 3: Proc. SPIE”, San Diego, California (1988), p. 110.

    Chapter  Google Scholar 

  8. L. M. Gavin, M. A. Green, S. M. Levin, G. F. Smoot and C, Witebsky, Design and testing of a superfluid liquid helium cooling loop, to be published in: “Advances in Cryogenic Engineering”, Vol. 35, Plenum Press, New York.

    Google Scholar 

  9. J. H. Lee, Y. S. Ng and S. S. Maa, Dewar Performance Comparison of SIRTF in the 900 km and 70,000 km orbits, to be published in: “Advances in Cryogenic Engineering”, Vol. 35, Plenum Press, New York.

    Google Scholar 

  10. R. T. Parmley, Unique cryogenic features of the Gravity Probe B (GP-B) experiment, in: “Advances in Cryogenic Engineering”, Vol. 33, Plenum Press, New York (1988), p. 943.

    Google Scholar 

  11. W.E. Keller, “Helium 3 and Helium 4”, Plenum (New York) 1969, chapter 8.

    Book  Google Scholar 

  12. M.J. DiPirro, E.R. Quinn and R.F. Boyle, Tests of a nearly ideal, high rate thermomechanical pump, “Proc. of ICEC12”, Southampton, UK 1988 (Butterworths), p. 646.

    Google Scholar 

  13. P.M. Selzer, W.M. Fairbank and C.W.F. Everitt, “A superfluid plug for space”, in: “Advances in Cryogenic Engineering”, Vol. 16, Plenum Press, New York (1971), p. 277.

    Book  Google Scholar 

  14. M.J. DiPirro, D.C. McHugh and J. Zahniser, Phase separators for normal and superfluid helium, “Proc. of ICEC12”, Southampton, UK, 1988 (Butterworths), p. 681; M.J. DiPirro and J. Zahniser, “A liquid/gas phase separator for He I and He II”, to be published in: “Advances in Cryogenic Engineering”, Vol. 35, Plenum Press, New York.

    Google Scholar 

  15. M. DiPirro, F. Fash and D. McHugh, Precision measurements on a porous plug for use in COBE, “Proc. 1983 Space Helium Dewar Conf”., University of Alabama Press (Huntsville), (1984); M.J. DiPirro and J. Zahniser, “The liquid/vapor phase Cryogenic Engineering”, Vol. 35, Plenum Press, New York.

    Google Scholar 

  16. See, for instance, G. Klipping, Scientific and Engineering Aspects of the Active Phase Separator, in: “Advances in Cryogenic Engineering”, Vol. 31, Plenum Press, New York (1986), p. 851.

    Google Scholar 

  17. J.F. Allen and H. Jones, Nature (London) 141, 243 (1938).

    Article  Google Scholar 

  18. J.F. Allen and J. Reekie. Proc. Camh. Phil. Soc. Math. Phy. Sci. 35, 114 (1939).

    Article  Google Scholar 

  19. A. Hofmann, A. Khalil and H.P. Kramer, “Operational characteristics of loops with helium II flow driven by fountain effect pumps”, in: “Advances in Cryogenic Engineering”, Vol. 33, Plenum Press, New York (1988), p. 471.

    Google Scholar 

  20. L.M. Gavin, et al., “Design and testing of a superfluid helium cooling loop”, CEC 1989, Los Angeles, CA, to be published in: “Advances in Cryogenic Engineering”, Vol. 35, Plenum Press, New York.

    Google Scholar 

  21. J. B. Hendricks, “The minimum temperature of the ’vortex’ cryocooler”, to be published in: “Advances in Cryogenic Engineering”, Vol. 35, Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Castles, S.H., DiPirro, M.J. (1990). The Fountain Effect in Aerospace Cryogenics. In: Fast, R.W. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0639-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0639-9_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7904-4

  • Online ISBN: 978-1-4613-0639-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics