Skip to main content

Numerical Computation of Thermal Shock Wave in HE II

  • Chapter
  • 32 Accesses

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 35))

Abstract

Application of the numerical computation is attempted to the two- fluid equations for superfluid helium. The propagation of thermal shock waves is numerically simulated by applying a finite difference method, MacCormack’s forward-predictor backward-corrector method. The thermodynamic quantities are computed as functions of temperature and pressure with the aid of the interpolation of data presented by Faynard. The numerical result shows that for moderately strong shock waves the relative velocity between the normal and super components amounts to several m/s, and the superfluid breakdown phenomena should be considered. The mutual- friction term is introduced to the two-fluid equation system, for which the time for the development of vortices must be considered through the modified Gorter-Mellink coefficient A = A(T,t). The computational results qualitatively agree with experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. J. R. Torczynski, Phys. Rev. B 39:2165 (1989).

    Article  Google Scholar 

  2. D. Gentile, Numerical Heat Transfer 6:317 (1983).

    Article  Google Scholar 

  3. T. N. Turner, Phys. Fluids 26:3227 (1983).

    Article  Google Scholar 

  4. J. R. Torczynski, Phys. Fluids 27:2636 (1984).

    Article  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, “Fluid Mechanics”, Pergamon Press, Oxford, UK (1959), Chap. 16.

    Google Scholar 

  6. R. W. MacCormack, AIAA Paper 69:354 (1969).

    Google Scholar 

  7. P. J. Roache, “Computational Fluid Dynamics”, Hermosa Publishers Inc., England (1976) 8. J. Maynard, Phys. Rev. B 14:3868 (1976).

    Google Scholar 

  8. C. J. Gorter and J. H. Mellink, Physica 15:285 (1949).

    Article  Google Scholar 

  9. W. F. Vinen, Proc. Roy. Soc. A 240:114 (1957).

    Article  Google Scholar 

  10. W. F. Vinen, Proc. Roy. Soc. A 240:128 (1957).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iwashita, K., Murakami, M. (1990). Numerical Computation of Thermal Shock Wave in HE II. In: Fast, R.W. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0639-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0639-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7904-4

  • Online ISBN: 978-1-4613-0639-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics