Advertisement

Preliminary Design of a 100 W 1.8 K to 4.7 K Regenerative Magnetic Refrigerator

  • A. J. Degregoria
  • J. A. Barclay
  • P. J. Claybaker
  • S. R. Jaeger
  • S. F. Kral
  • R. A. Pax
  • J. R. Rowe
  • C. B. Zimm
Chapter
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 35)

Abstract

An Active Magnetic Regenerator (AMR.) is designed to operate in the 1.8 K to 4.7 K range using a particle bed of gadolinium gallium garnet (GGG) as the magnetic material and liquid helium as the heat transfer fluid. A detailed mode] of the design is described in which all relevant physical and material properties are included. Using conservative operating parameters, a 100 W device is possible with COP efficiency relative to Carnot in the 40 to 50% range and a bed volume of less than 5 liters. In addition to its compact nature and high efficiency, the design offers the advantages of having only two moving parts operating at low speed, and operating pressure greater than one atmosphere.

Keywords

Heat Exchanger Heat Transfer Fluid Cooling Power Gadolinium Gallium Garnet Magnetic Refrigerator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Peterson, Status:Large-scale subatmospheric cryogenic systems, 1989 IEEE Particle Accelerator Conference to be published.Google Scholar
  2. 2.
    G. Bon Mardion et al., Initial operation of the 1.8 K Tore Supra Cryogenic System, in: “Proceedings f the Twelfth Cryogenic Engineering Conference,” R. G. Scurlock and C. A. Bailey, ed., Butterworth & Co., Guildford, Surrey (1988), p. 511.Google Scholar
  3. 3.
    J. A. Barclay, The theory of an active magnetic regenerative refrigerator, “Proceedings of the 2nd biennial conference on refrigeration for cryogenic sensors and electronic systems”, NASA Goddard Space Flight Center, Greenbelt, MD, Dec. 7–8, 1982.Google Scholar
  4. 4.
    J. A. Barclay and W. A. Steyert, Active Magnetic Regenerator, US Patent 4,332,135, Jun. 1, 1982.Google Scholar
  5. 5.
    J. R. van Geuns, A study of a new magnetic refrigerator cycle, Philips Research Report Supplements 6 (1966).Google Scholar
  6. 6.
    G. R. Gallagher, Analysis of magnetically active regeneration, S. M. thesis, Dept. of Mechanical Engineering, MIT, Cambridge MA, Oct. 1986.Google Scholar
  7. 7.
    S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles, AIChE Journal Vol. 18, No. 2, Mar. 1972.Google Scholar
  8. 8.
    R. D. McCarty, Thermophysical properties of helium-4 from 2 to 1500K with pressures to 1000 atmospheres, NBS Technical Note 631, Boulder CO, Nov. 1972.Google Scholar
  9. 9.
    J. Wilks, “The Properties of Liquid and Solid Helium,” Oxford University Press, London (1967)Google Scholar
  10. 10.
    S. W. Van Sciver, “Helium Cryogenics,” Plenum Press, New York (1986).Google Scholar
  11. 11.
    J. T. Davies, “ Turbulence phenomena,” Academic Press, New York (1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • A. J. Degregoria
    • 1
  • J. A. Barclay
    • 1
  • P. J. Claybaker
    • 1
  • S. R. Jaeger
    • 1
  • S. F. Kral
    • 1
  • R. A. Pax
    • 1
  • J. R. Rowe
    • 1
  • C. B. Zimm
    • 1
  1. 1.Astronautics Corporation of AmericaAstronautics Technology CenterMadisonUSA

Personalised recommendations