Advertisement

Lesion Measurement in Non-Radioactive DNA by Quantitative Gel Electrophoresis

  • John C. Sutherland
  • Chun Zhang Chen
  • Ann Emrick
  • Haim Hacham
  • Denise C. Monteleone
  • Eldred Ribeiro
  • John Trunk
  • Betsy M. Sutherland
Part of the Basic Life Sciences book series (BLSC, volume 53)

Abstract

The important role of DNA damage and repair in homeostasis has been clearly demonstrated by studies involving isolated DNA, procaryotic cells and eukaryotic cells growing in culture. The information obtainable from these model systems, while extremely valuable, can never replace the need for data from intact higher organisms. The gel electrophoresis method developed during the past ten years in our laboratories makes possible the quantitation of UV induced pyrimidine dimers, gamma ray induced single- and double-strand breaks and many other types of lesions in nanogram quantities of DNA. The DNA does not have to be labeled with radionuclides or of a particular conformation, thus facilitating the use of the method in measuring damage levels and repair rates in the DNA of intact organisms -- including man.

Keywords

Length Standard Dispersion Function Micrococcus Luteus Ethidium Bromide Fluorescence Ethidium Fluorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achey, P. M., Woodhead, A. D. and Setlow, R. B., 1979, Photoreactivation of pyrimidine dimers from thyroid cells of the teleost, Poecilia formosa, Photochem. Photobiol., 29: 305–310.CrossRefGoogle Scholar
  2. Bancroft, I. and Wolk, C. P., 1988, Pulsed homogeneous field gel electrophoresis (PHOGE), Nucleic Acids Res., 16: 7405–7418.PubMedCrossRefGoogle Scholar
  3. Carle, G. F., Frank, M. and Olson, M. V., 1986, Electrophoretic separations of large DNA molecules by periodic inversion of the electric field, Science, 232: 65–68.PubMedCrossRefGoogle Scholar
  4. Carrier, W. L. and Setlow, R. B., 1970. Endonuclease from Micrococcus luteus which has activity towards ultraviolet irradiated deoxyribonucleic acid: purification and properties, J. Bact., 102: 178–186.PubMedCrossRefGoogle Scholar
  5. Chen C-Z. and Sutherland. J. C., 1989, Gel electrophoresis method for quantitation of gamma ray induced single- and double-stranded breaks in DNA in vitro, Electrophoresis. 10: 316–326.CrossRefGoogle Scholar
  6. Chu, G., Vollrath, D. and Davis, R. W., 1986, Separation of large DNA molecules by contour-clamped homogeneous electric fields, Science. 234: 1582–1585.PubMedCrossRefGoogle Scholar
  7. Clark, S. M., Lai, E., Birren, B. W. and Hood, L., 1988, A novel instrument for separating large DNA molecules with pulsed homogeneous electric fields, Science. 241: 1203–1205.PubMedCrossRefGoogle Scholar
  8. Deutsch, J. M., 1987, Dynamics of pulsed-field electrophoresis, Physical Review Letters. 59: 1255–1258.PubMedCrossRefGoogle Scholar
  9. Deutsch, J. M., 1988, Theoretical studies of DNA during gel electrophoresis, Science. 240: 922–924.PubMedCrossRefGoogle Scholar
  10. Ditchburn, R. W., 1965, Light, vols 1, John Wiley, New York.Google Scholar
  11. Freeman, S. E., Blackett, A. D., Monteleone, D. C., Setlow, R. B., Sutherland, B. M., and Sutherland, J. C., 1986, Quantitation of radiation-, chemical- or enzyme-induced single strand breaks in nonradioactive DNA by alkaline gel electrophoresis: application to pyrimidine dimers, Analvt. Biochem., 158: 119–129.CrossRefGoogle Scholar
  12. Freeman, S. E., Sutherland, J. C., Sutherland, B. M., Gange, R. W., and Matzinger, E. A., 1987, Production of pyrimidine dimers in DNA of human skin exposed in situ to UVA radiation, J. Invest. Dermatol., 88: 430–433.PubMedCrossRefGoogle Scholar
  13. Freeman, S. E., 1988, Variations in excision repair of UVB-induced pyrimidine dimers in DNA of human skin In Situ, J. Invest. Dermatol., 90: 814–817.PubMedCrossRefGoogle Scholar
  14. Freeman, S. E., Hacham, H., Gange, R. W., Maytum, D., Sutherland, J. C., and Sutherland, B. M., 1989, Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ, Proc. Nat. Acad. Sci. U.S., 86: 5605–5609.CrossRefGoogle Scholar
  15. Gardiner, K., Laas, W., Patterson, D., 1986, Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis, Somatic Cell and Molecular Genetics. 12: 185–195.PubMedCrossRefGoogle Scholar
  16. Lerman, L. S. and Frisch, H. L., 1982, Why does the electrophoretic mobility of DNA vary with the length of the molecule?, Biopolymers. 21: 995–997.PubMedCrossRefGoogle Scholar
  17. Lett, J. T., 1981, Measurement of single-strand breaks by sedimentation in alkaline sucrose gradients, In, “DNA Repair, A Laboratory Manual of Research Procedures 1, part B”, E. C. Friedberg, and P. C. Hanawalt, eds., Marcel Dekker, Inc. New York.Google Scholar
  18. Lumpkin, O. J. and Zimm, B. H., 1982, Mobility of DNA in gel electrophoresis, Biopolymers. 21: 2315–2316.PubMedCrossRefGoogle Scholar
  19. McDonnell, M. W., Simon, M. N. and Studier, F. W., 1977, Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels, J. Mol. Biol., 110: 119–146.CrossRefGoogle Scholar
  20. Prunell, A., Strauss, F. and Leblanc, B., 1977, Photographic quantitation of DNA in gel electrophoresis, Analyt. Biochem., 78: 57–65.PubMedCrossRefGoogle Scholar
  21. Prunell, A., 1980, A Photographic method to quantitate DNA in gel electrophoresis, Methods in Enzvmoloqy, 65: 353–358.CrossRefGoogle Scholar
  22. Pulleyblank, D. E., Shure, M. and Vinograd, J., 1977, The quantitation of fluorescence by photography, Nucleic Acids Res., 4: 1409–1418.PubMedCrossRefGoogle Scholar
  23. Ribeiro, E., Larcom, L. L. and Miller, D. P., 1989, Quantitative fluorescence of DNA intercalated ethidium bromide of agarose gels, Analyt. Biochem., 181: 197–208.PubMedCrossRefGoogle Scholar
  24. Schaffer, H. E. and Sederoff, R. R., 1981, Improved estimation of DNA fragment lengths from agarose gels, Analyt. Biochem., 115: 113–122.PubMedCrossRefGoogle Scholar
  25. Schwartz, D. C. and Cantor, C. R., 1984, Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis, Cell. 37: 67–75.PubMedCrossRefGoogle Scholar
  26. Seawell, P. C., Friedberg, E. C., Ganesan, A. K., and Hanawalt, P. C., 1981, Purification of endonuclease V of bacteriophage T4. in, “DNA Repair, A Laboratory Manual of Research Procedures 1, part B”. E. C. Friedberg and P. C. Hanawalt, eds, Marcel Dekker, Inc. New York.Google Scholar
  27. Serwer, P., 1987, Gel electrophoresis with discontinuous rotation of the gel: an alternative to gel electrophoresis with changing direction of the electric field, Electrophoresis, 8: 301–304.CrossRefGoogle Scholar
  28. Southern, E. M., 1979, Measurement of DNA length by gel electrophoresis, Analyt. Biochem., 100: 319–323.PubMedCrossRefGoogle Scholar
  29. Southern, E. M., Anand, R., Brown, W. R. A., and Fletcher, D. S., 1987, A model for the separation of Large DNA molecules by crossed field Electrophoresis, Nucleic Acids Res., 15: 5925–5943.PubMedCrossRefGoogle Scholar
  30. Sutherland, B. M., Harbor, L. C. and Kochevar, I. E., 1980, Pyrimidine dimer formation and repair in human skin, Cancer Res., 40: 3181–3185.PubMedGoogle Scholar
  31. Sutherland, B. M. and Shih, A. G., 1983, Quantitation of pyrimidine dimer content of nonradioactive deoxyribonucleic acid by electrophoresis in alkaline agarose gels, Biochem., 22: 745–749.CrossRefGoogle Scholar
  32. Sutherland, J. C., Monteleone, D. C., Trunk, J. and Ciarrocchi, G., 1984, Two dimensional, computer-controlled film scanner: quantitation of fluorescence from ethidium bromide-stained DNA gels, Analyt. Biochem., 139: 390–399.PubMedCrossRefGoogle Scholar
  33. Sutherland, J. C., Lin, B., Monteleone, D. C., Mugavero, J., Sutherland, B. M., and Trunk, J. 1987a, Electronic imaging system for direct and rapid quantitation of fluorescence from electrophoretic gels: application to ethidium bromide-Stained DNA, Analyt. Biochem., 163: 446–457.PubMedCrossRefGoogle Scholar
  34. Sutherland, J. C., Monteleone, D. C., Mugavero, J. H., and Trunk, J., 1987b, Undirectional pulsed-field electrophoresis of single- and double-stranded DNA in agarose gels: analytical expressions relating mobility and molecular length and their application in the measurement of strand breaks, Analyt. Biochem., 162: 511–520.PubMedCrossRefGoogle Scholar
  35. Sutherland, J. C., Bergman, A. M., Chen, C-Z., Monteleone, D. C., Trunk, J., and Sutherland, B. M., 1988, Measurement of DNA damage using gel electrophoresis and electronic imaging, in: “Electrophoresis ’88”, C. Schafer-Nielsen, ed., VCH Verlagsgesellschaft, Weinheim.Google Scholar
  36. Sutherland, J. C., 1990, Electronic imaging systems for quantitative electrophoresis of DNA. in: “Non-invasive Techniques in Biology and Medicine”, San Francisco Press, (in the press).Google Scholar
  37. Veatch, W. and Okada, S., 1969, Radiation induced breaks in cultured mammalian cells, Biophvs. J., 9: 330–346.CrossRefGoogle Scholar
  38. Woodhead, A. D., Achey, P., Setlow, R. B. and Grist, E., 1978, Photoenzymatic repair of ultraviolet-irradiated DNA in the cells of a shark, Prionace glauca, Comp. Biochem. Physiol., 60B, 205–208.CrossRefGoogle Scholar
  39. Woodhead, A. D. and Achey, P., 1979, Photoreactivating enzyme in the blind cave fish, Anoptichthys jordani, Comp. Biochem. Physiol., 63B: 73–76.Google Scholar
  40. Woodhead, A. D. and Achey, P., 1981, Photoreactivating enzyme activity in the rat tapeworm, Hymenolepis diminuta, J. Parasitol., 67: 386–371.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • John C. Sutherland
    • 1
  • Chun Zhang Chen
    • 1
  • Ann Emrick
    • 1
  • Haim Hacham
    • 1
  • Denise C. Monteleone
    • 1
  • Eldred Ribeiro
    • 1
  • John Trunk
    • 1
  • Betsy M. Sutherland
    • 1
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations