Skip to main content

Photonic Switching Architectures and Their Comparison

  • Chapter

Part of the book series: Frontiers of Computing Systems Research ((FCSR,volume 1))

Abstract

This paper reviews various architectures for photonic switching that have been proposed in the literature. The paper presents only the routing aspects of photonic switching, and in particular, the lithium niobate technology of the directional coupler. The paper:

  1. 1.

    provides the motivation for photonic switching, describes the various photonic switching elements, and discusses different control mechanisms required for photonic switching;

  2. 2.

    explains the principles of an electro-optic switch;

  3. 3.

    enumerates the architectural considerations involved in a photonic switch design;

  4. 4.

    discusses several space division switch architectures and compares their characteristics;

  5. 5.

    describes time division switching and different basic time division switching architectures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hewitt, L., and Pitchford, M., Making the Transition: Fiber Winds Its Way Home, Telephony, Feb. 15, 1988, p 34.

    Google Scholar 

  2. Elion, H. A., and Morozov, V. N., Optoelectronic Switching Systems in Telecommunications and Computers, Marcel Dekker, Inc., New York k Basel, 1984.

    Google Scholar 

  3. Pyykkonen, M., Optical Switching and Computing, Telecommunications, Dec. 1986, p. 32.

    Google Scholar 

  4. Personick, S. D., Photonic Switching: Technology and Applications, IEEE Communications Magazine, Vol. 25(5), p. 5, May 1987.

    Article  Google Scholar 

  5. Kaufman, S., Reynolds, R. L., and Loeffer, C., Optical Switch for the SL Undersea Lightwave System, in Undersea Lightwave Communications, P.K. Runge and P.R. Trischitta (Editors), IEEE Press, New York, 1986, p. 487.

    Google Scholar 

  6. Joel, A. E., Jr., On Permutation Switching Network, Bell System Technical Journal, Vol. 47, p. 813, 1968.

    MATH  Google Scholar 

  7. Hinton, H. S., Photonic Switching Connects to the Future, Telecommunications, p. 79, May 1987

    Google Scholar 

  8. Prucnal, P. R., Blumenthal, D. J., and Perrier, P. A., Self-Routing Photonic Switching Demonstration with Optical Control, Optical Engineering, Vol. 26(5), p. 423, May 1987.

    Google Scholar 

  9. Huang, A., Architectural Considerations Involved in the Design of an Optical Digital Computer, Proceedings of the IEEE, Vol.72(7), p. 780, July 1984.

    Article  Google Scholar 

  10. Jewell, J.L., Rushford, M.C., and Gibbs, H.M., Use of a Single Nonlinear Fabry-Perot Etalon as Optical Logic Gates, Applied Physics Letters, Vol. 44(2), p. 172, Jan. 1984.

    Article  Google Scholar 

  11. Miller, D. A. B., et al., The Quantum Well Self-Electro-Optical Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation, IEEE J. Quantum Electronics, Vol.QE-21(9), p. 1462, Sept. 1985.

    Article  Google Scholar 

  12. Streibl, N., et al., Digital Optics, Proceedings of the IEEE, Jan 1990 (to be published)

    Google Scholar 

  13. Miller, D.A.B., Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters, Optics Letters, Vol. 14(2), p. 146, Jan 15, 1989

    Article  Google Scholar 

  14. Friberg, S.R., et. al., Femtosecond switching in a dual-core-fiber nonlinear coupler, Optics Letters, Vol. 13(10), p. 904, Oct 1988.

    Article  Google Scholar 

  15. Ohmachi, Y., Node, J., LiNbO 3 TE → TM Mode Converter Using Collinear Acousto-Optic Interaction, IEEE J. Quantum Electronics, Vol. QE-13, p. 43, 1977.

    Article  Google Scholar 

  16. Tien, P. K., et al., Switching and Modulation of Light in Magnetoptic Waveguides of Garnet Films, Applied Physical Letters, Vol. 21, p. 394, 1972.

    Article  Google Scholar 

  17. Tsai, C. S., Kim, B., and El-Akkari, F. R., Optical Channel Waveguide Switch and Coupler Using Total Internal Reflection, IEEE J. Quantum Electronics, Vol. QE-14(7), p. 513, 1978.

    Article  Google Scholar 

  18. Hinton, H. S., Photonic Switching Using Directional Couplers, IEEE Communications Magazine, Vol. 25, p. 16, May 1987

    Article  MathSciNet  Google Scholar 

  19. Bergmann, E. E., McCaughan, L., and Watson, J. E., Coupling of Intersecting Ti: LiNbO 3 Diffused Waveguides, Applied Optics, Vol. 23(17), Sept. 1, 1987.

    Google Scholar 

    Google Scholar 

  20. Schmidt, R. V., and Alferness, R. C., Directional Coupler Switches, Modulators and Filters Using Alternating ΔβTechniques, IEEE Transactions on Circuits and Systems, Vol.CAS-26, p. 1099, Dec.1979.

    Article  Google Scholar 

  21. Miller, S. E., Coupled-Wave Theory and Waveguide Applications, Bell System Technical Journal, Vol. 33, p. 661, May 1954.

    Google Scholar 

  22. Korotky, S. K., Three-Space Representation of Phase-Mismatch Switching in Coupled Two-State Optical Systems, IEEE J. Quantum Electronics, Vol.QE-22(6), p. 952, June 1986.

    Article  Google Scholar 

  23. Kogelnik, H., and Schmidt, R. V., Switched Directional Couplers with Alternating Δβ, IEEE J. Quantum Electronics, Vol.QE-12, p. 396, July 1976

    Article  Google Scholar 

  24. Schmidt, R. V., and Kogelnik, H., Electro-Optically Switched Coupler with Stepped Δβ Reversal Using Ti-Diffused LiNbO 3 Waveguides, Applied Physical Letters, Vol.28(9), May 1, 1976.

    Google Scholar 

  25. Alferness, R. C., Schmidt, R. V., and Turner, E. H., Characteristics of Ti-diffused Lithium Niobate Optical Directional Couplers, Applied Optics, Vol. 18,(23), p. 4012, Dec. 1979.

    Article  Google Scholar 

  26. Thompson, R. A., Traffic Capabilities of Two Rearrangeably Non-Blocking Photonic Switching Modules, AT&T Technical Journal, Vol. 64(10), p. 2331, Dec. 1985.

    Google Scholar 

  27. Spanke, R. A., Architectures for Guided-Wave Optical Space Switching Systems, IEEE Communications Magazine, Vol. 25(5), p. 42, May 1987.

    Article  Google Scholar 

  28. Padmanabhan, K., and Netravali, A., Dilated networks for photonic switching, IEEE Trans. Communications, Vol. COM-35(12), p. 1357, Dec. 1987.

    Article  Google Scholar 

  29. Spanke, R. A., and Benes, V. E., N-Stage Planar Optical Permutation Network, Applied Optics, Vol. 26(7), April 1987.

    Google Scholar 

    Google Scholar 

  30. Kondo, M., Takado, N., Komatsu, K., and Ohta, Y., 32 Switch Elements Integrated Low-Crosstalk LiNbO 3 4×4 Optical Matrix Switch, IOOC-ECOC 1985, Venice, pp. 361–364, 1985.

    Google Scholar 

  31. Clos, C., A Study of Non-Blocking Switching Networks, Bell System Technical Journal Vol. 32, p. 404, March 1953.

    Google Scholar 

  32. Benes, V. E., Mathematical Theory of Connecting Network and Telephone Traffic, Academic Press, New York, 1965.

    Google Scholar 

  33. Spanke, R. A., Architectures for Large Nonblocking Optical Space Switches, IEEE J. Quantum Electronics, Vol. QE-22, p. 964, June 1986.

    Article  Google Scholar 

  34. Thompson, R. A., and Giordano, P. P., An Experimental Photonic Time Slot Interchanger Using Optical Fiber as Re-Entrant Delay-Line Memories, IEEE Journal of Lightwave Technology, Jan. 1987.

    Google Scholar 

  35. Thompson, R. A., Architecture for Improved Signal-to-Noise Ratio in Photonic Systems with Fiber-Loop Delay Lines, AT&T Bell Laboratories Report (1987)

    Google Scholar 

  36. Thompson, R. A., Architectures with Improved Signal-to-Noise Ratio in Photonic Systems with Fiber-Loop Delay Lines, IEEE Journal SAC, Vol. 6, p. 1096, Aug. 1988.

    Google Scholar 

  37. Kondo, M., et al., High Speed Optical Time Switch with Integrated Optical 1×4 Switches and Single-Polarization Fiber Delay Lines, presented at the International Conference of Integrated Optical Fiber Communications, June 1983.

    Google Scholar 

  38. G. R. Ritchie, Syntran — A new direction for digital transmission terminals, EEE Communications, Nov. 1985.

    Google Scholar 

  39. Watson, J.E., Milbrodt, M.A., Bahadori, K., Dautartas, M.F., Kemmerer, C.T., Moser, D.T., Schelling, A.W., Murphy, T.O., Veselka, J.J., and Herr, D.A., A Low Voltage Low Crosstalk 8 × 8 Ti: LiNbO 3 Switch for a Time-Multiplexed Switching System, Optical Fiber Communication Conference Digest, Optical Society of America, Houston, Texas, Feb 6, 1989, p. 135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Ailawadi, N.K. (1990). Photonic Switching Architectures and Their Comparison. In: Tewksbury, S.K. (eds) Frontiers of Computing Systems Research. Frontiers of Computing Systems Research, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0633-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0633-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7902-0

  • Online ISBN: 978-1-4613-0633-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics