Skip to main content

Stability of Continuous Cellular Automata

  • Chapter
Book cover Frontiers of Computing Systems Research

Part of the book series: Frontiers of Computing Systems Research ((FCSR,volume 1))

  • 48 Accesses

Abstract

We formally coarse-grain the microscopic equations of motion which determine the dynamical behavior of a class of cellular automata by projection-operator methods. Thus, we obtain a macroscopic description in terms of Langevin equations for the slow long-lifetime thermodynamic variables, such as order parameters. The dynamical rules for the automata are modeled by equations which are similar to Hamilton’s equations. For reversible automata, we obtain the standard results of nonequilibrium statistical physics, namely, fluctuation-dissipation relations, Onsager’s symmetry relations, and Green-Kubo relations. For dynamical rules which have both reversible and irreversible parts we find that none of these results apply. For irreversible rules, we obtain an exact result: the slow variable is linearly unstable due to a “fluctuation-enhancement” relation. This can imply that the structure in the irreversible cellular automata grows exponentially for early times. We also discuss the relationship of our results to the growth of ordered structure in physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. von Neumann, in Theory of Self-Reproducing Automata, edited by A. W. Birks (Univ. of Illinois Press, Urbana, IL, 1966).

    Google Scholar 

  2. Theory and Applications of Cellular Automata edited by S. Wolfram (World Science, Singapore, 1986)

    Google Scholar 

  3. T. Toffolli and N. Margolus, Cellular Automata Machines (MIT press, Cambridge MA, 1987)

    Google Scholar 

  4. S. Wolfram, Rev. Mod. Phys. 55, 601 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  5. Physica (Amsterdam) 10D, 1–247 (1984).

    Google Scholar 

  6. E. Domany and W. Kinzel, Phys. Rev. Lett. 53, 311 (1984)

    Article  MathSciNet  Google Scholar 

  7. C. H. Bennett and G. Grinstein, Phys. Rev. Lett. 55, 657 (1985).

    Article  Google Scholar 

  8. G. Grinstein, C. Jayaprakesh, and Y. He, Phys. Rev. Lett. 55, 2527 (1985).

    Article  MathSciNet  Google Scholar 

  9. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Chandrasekhar, Rev. Mod. Phys. 21, 383 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905).

    Google Scholar 

  12. P. Langevin, C. R. Acad. Sci. (Paris) 146, 530 (1908).

    MATH  Google Scholar 

  13. L. Onsager, Phys. Rev. 37, 405 (1931).

    Article  MATH  Google Scholar 

  14. L. Onsager, Phys. Rev. 38, 2265 (1931).

    Article  MATH  Google Scholar 

  15. M. S. Green, J. Chem. Phys. 20, 1281 (1952).

    Article  MathSciNet  Google Scholar 

  16. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  Google Scholar 

  17. R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Jpn. 12, 1203 (1957)

    Article  MathSciNet  Google Scholar 

  18. R. Kubo, Rep. Prog. Phys. 29, 255 (1966).

    Article  Google Scholar 

  19. R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).

    Article  MathSciNet  Google Scholar 

  20. R. Zwanzig, on Lectures in Theoretical Physics, edited by W. E. Brittin, B. W. Downs, and J. Downs (Interscience, New York, 1961), Vol. 3.

    Google Scholar 

  21. H. Mori, Prog. Theor. Phys. 33, 423 (1965).

    Article  MATH  Google Scholar 

  22. H. Mori, Prog. Theor. Phys. 34, 399 (1965).

    Article  Google Scholar 

  23. R. Zwanzig, Phys. Rev. 124, 983 (1961).

    Article  MATH  Google Scholar 

  24. H. Mori, Prog. Theor. Phys. 49, 764 (1973).

    Article  Google Scholar 

  25. H. Mori, Prog. Theor. Phys. 49, 1516 (1973).

    Article  Google Scholar 

  26. K. Kawasaki, Ann. Phys. (N. Y.) 61, 1 (1970).

    Article  Google Scholar 

  27. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Reading, MA, 1975).

    Google Scholar 

  28. J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1980).

    Google Scholar 

  29. N. G. van Kampen, Stochastic Methods in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    Google Scholar 

  30. P. Resibois, in Proceedings of the Sixth IUPAP Conference on Statistical Mechanics, edited by S. Rice (Univ. of Chicago Press, Chicago, IL, 1972).

    Google Scholar 

  31. M. Grant and J. D. Gunton, Phys. Rev. Lett. 57, 1970 (1986).

    Article  MathSciNet  Google Scholar 

  32. J. A. McLennan, Adv. Chem. Phys. 5, 260 (1963).

    Google Scholar 

  33. K. Kawasaki, J. Phys. A 6, 1289 (1973), has used projection-operator techniques to study nonequilibrium steady states..

    Article  MathSciNet  Google Scholar 

  34. J. W. Cahn, Trans. Mettal. Soc. AIME 242, 166 (1968).

    Google Scholar 

  35. J. E. Hilliard, in Phase Transformations, edited by H. I. Aronson (American Society of Metals, Ohio, 1970).

    Google Scholar 

  36. H. E. Cook, Acta Metall. 18, 297 (1970)

    Article  Google Scholar 

  37. J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, London, 1983), Vol. 8.

    Google Scholar 

  38. W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 34, 323 (1963).

    Article  Google Scholar 

  39. W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35, 444 (1964).

    Article  Google Scholar 

  40. J. S. Langer, Rev. Mod. Phys. 52, 1 (1980).

    Article  Google Scholar 

  41. M. Laradji, M. Sc. thesis (McGill University, 1989).

    Google Scholar 

  42. M. Laradji, M. Grant, M. J. Zuckermann, and W. Klein, McGill University preprint.

    Google Scholar 

  43. I. Prigogine, in Order and Fluctuations in Equilibrium and Nonequilibrium Statistical Physics, edited by G. Nicolis, G. Dewer, and J. W. Turner (Wiley, New York, 1981), p. 35.

    Google Scholar 

  44. H. Haken, Synergetics (Springer-Verlag, New York, 1983).

    Google Scholar 

  45. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, New York, 1971).

    MATH  Google Scholar 

  46. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977).

    MATH  Google Scholar 

  47. J. L. Lebowitz, Physica 140A, 232 (1986).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Grant, M., Gunton, J.D. (1990). Stability of Continuous Cellular Automata. In: Tewksbury, S.K. (eds) Frontiers of Computing Systems Research. Frontiers of Computing Systems Research, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0633-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0633-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7902-0

  • Online ISBN: 978-1-4613-0633-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics