Advertisement

Nonlinear Optics of a Single Slightly-Relativistic Cyclotron Electron

  • A. E. Kaplan
  • Y. J. Ding
Part of the Ettore Majorana International Science Series book series (volume 49)

Abstract

The interaction of microwave and optical radiation with a tiny relativistic single electron can result in strong nonlinear-optical effects1−7 based on the most fundamental mechanism of nonlinear interaction of light with matter 3 Even a slight relativistic change of mass of a single free electron may result in large nonlinear effects such as hysteresis and bistability in cyclotron resonance of the electron precessing in a dc magnetic field under the action of an EM wave1. The relativistic masse-ffect consists in the increase of the effective mass of electron, m, as its speed v, or energy W, or momentum p, increase:
$$m/{{m}_{0}} = \gamma = {{(1 - {{v}^{2}}/{{c}^{2}})}^{{ - 1/2}}} = {{(1 + {{p}^{2}}/{{m}^{2}}{{c}^{2}})}^{{1/2}}},$$
where m0 is the electron rest mass, γ = W/m0c2 is the dimensionless electron energy, and c is the speed of light. Because of very low energy losses (which are due to synchrotron radiation), the relativistic change of mass to which the hystegetic resonance is attributed may be as strikingly small as 10−6 – 10−6 Consistent with predictions1, the hysteretic (bistable) cyclotron resonance of a free electron has been subsequently observed in an experiment in which a single electron has been trapped in a Penning trap for a period of time as long as 10 months.

Keywords

Cyclotron Resonance Cyclotron Frequency Cyclotron Electron Propagation Configuration Nonlinear Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Kaplan, Phys. Rev. Lett., 48, 138 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    G. Gabrielse, H. Dehmelt, and W. Kells, Phys. Rev. Lett., 54, 537 (1985)ADSCrossRefGoogle Scholar
  3. 3a.
    A. E. Kaplan, Nature, 317, 476 (1985);ADSCrossRefGoogle Scholar
  4. 3b.
    A. E. Kaplan, IEEE J. Quant. Electr., QE-21, 1544 (1985)ADSCrossRefGoogle Scholar
  5. 4.
    A. E. Kaplan, Phys. Rev. Lett., 56, 456 (1986)ADSCrossRefGoogle Scholar
  6. 5.
    A. E. Kaplan, Opt. Lett., 12, 489 (1987)ADSCrossRefGoogle Scholar
  7. 6.
    Y. J. Ding and A. E. Kaplan, Opt. Lett., 12, 699 (1987)ADSCrossRefGoogle Scholar
  8. 7.
    Y. J. Ding and A. E. Kaplan, Phys. Rev. A, Brief Reports (September 1988)Google Scholar
  9. 8.
    H. M. Gibbs, “Optical Bistability”, Academic Press, N.Y., 1985Google Scholar
  10. 9.
    A. E. Kaplan, “Optical Bistability III”, Eds. H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, Springer, N. Y., pp. 240–243Google Scholar
  11. 10a.
    D. J. Wineland, J. Appl. Phys., 50, 2528 (1979);ADSCrossRefGoogle Scholar
  12. 10b.
    J. C. Bergquist and D. J. Wineland, Proc. 33rd An. Symp. Frequency Control, 1979, pp. 494–497CrossRefGoogle Scholar
  13. 11.
    A. E. Kaplan, and A. Elci, Phys. Rev. B, 29, 820 (1984)ADSCrossRefGoogle Scholar
  14. 12.
    A. E. Kaplan, and Y. J. Ding, Opt. Lett., 12, 687 (1987)ADSCrossRefGoogle Scholar
  15. 13.
    E. O. Kane, J. Phys. Chem. Solids, 1, 249 (1957)ADSCrossRefGoogle Scholar
  16. 14a.
    B. Lax, in Proc. Seventh Int. Conf. Phys. Semiconductors, Paris, France, 1964 p. 253;Google Scholar
  17. 14b.
    A. G. Aronov, Sov. Phys. Solid State, 5. 402, (1963);Google Scholar
  18. 14c.
    H. C. Praddaude, Phys. Rev., 140, A1292 (1965);ADSCrossRefGoogle Scholar
  19. 14d.
    W. Zawadzki and B. Lax, Phys. Rev. Lett., 16, 1001 (1966)ADSCrossRefGoogle Scholar
  20. 15.
    P. A. Wolff, J. Phys. Chem. Solids, 25, 1057 (1964)ADSCrossRefGoogle Scholar
  21. 16a.
    E. Yablonovitch, N. Bloembergen, and J. J. Wynne, Phys. Rev. B, 3, 2060 (1971);ADSCrossRefGoogle Scholar
  22. 16b.
    J. J. Wynne, Phys. Rev. B, 6, 534 (1972)ADSCrossRefGoogle Scholar
  23. 17.
    W. Zawadzki, S. Klahn, and U. Merkt, Phys. Rev. Lett., 55, 983 (1985)ADSCrossRefGoogle Scholar
  24. 18a.
    H. A. Lorentz, “The Theory of Electrons”, Teubner, Leipzig, 1909, p. 49,Google Scholar
  25. 18b.
    H. A. Lorentz, “The Theory of Electrons”, Teubner, Leipzig, 1909, p. 253Google Scholar
  26. 19.
    L. D. Landau and E. M. Lifshitz, “The Classical Theory of Fields”, Cambridge, MA, Addison-Wesley, 1971Google Scholar
  27. 20.
    N. Bloembergen, “Nonlinear Optics”, Benjiamin, N.Y., 1965Google Scholar
  28. 21.
    J. J. Stoker, “Nonlinear Vibrations in Mechanical and Electrical Systems”, New York: Interscience, 1950, Sec. A. A; see also N. Minorsky, “Nonlinear Oscillations”, Princeton, NJ: Van Nostrad (1962); see also L. D. Landau and E. M. Lifshitz, “Mechanics”, New York: Pergamon, 1976Google Scholar
  29. 22.
    A. E. Kaplan, Yu. A. Kravtsov, and V. A. Rylov, “Parametric Oscillators and Frequency Dividers”, Soviet Radio, Moscow, USSR, 1966, in RussianGoogle Scholar
  30. 23a.
    A. E. Kaplan, Radio Engineering and Electronic Physics, 8, 1340 (1963);Google Scholar
  31. 23b.
    A. E. Kaplan, Radio Engineering and Electronic Physics, 9, 1424 (1964);Google Scholar
  32. 23c.
    A. E. Kaplan, Radio Engineering and Electronic Physics, 11, 1214 (1966);Google Scholar
  33. 23d.
    A. E. Kaplan, Radio Engineering and Electronic Physics, 11, 1354 (1966)Google Scholar
  34. 24.
    A. E. Kaplan, Radiophys. Quant. Electr., 11, 900 (1968)ADSCrossRefGoogle Scholar
  35. 25a.
    E. M. MacMillan, Phys. Rev., vol. 68, pp. 143–144, Sept. 1945;ADSCrossRefGoogle Scholar
  36. 25b.
    see also V. Veksler, J. Phys. USSR, vol. 9, p. 153 (1945)Google Scholar
  37. 26.
    D. Bohm and L. L. Foldy, Phys. Rev., 72, 649 (1947)ADSCrossRefGoogle Scholar
  38. 27a.
    K. M. Evenson, D. A. Jennings, F. R. Peterson, and J. S. Wells, in: “Proc. Third Int. Conf. on Laser Spectroscopy”, J. L. Hall and J. L. Carlsten, Eds., Heidelberg: Springer-Verlag, 1977, vol 7, p. 56;Google Scholar
  39. 27b.
    D. J. E. Knight and P. T. Woods, J. Phys. E, 9, 898 (1976)ADSCrossRefGoogle Scholar
  40. 28.
    D. A. Jennings, C. R. Pollack, F. R. Peterson, R. E. Drullinger, K. M. Evenson, and J. S. Wells, Opt. Lett., 8, 136 (1983)ADSCrossRefGoogle Scholar
  41. 29.
    R. G. DeVoe and R. G. Brewer, Phys. Rev. A, 30, 2827 (1984)ADSCrossRefGoogle Scholar
  42. 30a.
    See for example, M. Kubicek, I. Stuchl, and M. Marek, J. Comp. Phys., 48, 106 (1982);MathSciNetADSMATHCrossRefGoogle Scholar
  43. 30b.
    T. Erneux and E. Reiss, SIAM J. Appl. Math., 43, 1240 (1983);MathSciNetMATHCrossRefGoogle Scholar
  44. 30c.
    J. C. Englund and W. C. Schieve, J. Opt. Soc. Amer., 2, 81 (1985);ADSCrossRefGoogle Scholar
  45. 30d.
    A. E. Kaplan and C. T. Law, IEEE J. Quant. Electr., QE-21, 1529 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • A. E. Kaplan
    • 1
  • Y. J. Ding
    • 1
  1. 1.Department of Electrical and Computer EngineeringThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations