Erythropoiesis in Cancer Patients Undergoing Immunotherapy

  • Joao L. Ascensao
  • Shu-Jun Liu
  • Jaime Caro
  • Eckhard Podack
  • Abraham Mittelmann
  • Esmail D. Zanjani
  • Yu-Liang Zhao
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 271)

Abstract

We studied ten patients with various types of cancer who were being treated with Interleukin-2 (IL-2) and lymphokine activated killer cells (LAK). All patients developed a reticulocytopenic, normochromic, normocyti anemia. We noted some variability but no significant suppression of circulating erythroid progenitors. The levels of erythropoietin were lower than expected for the hemoglobin/hematocrit values.

We could not detect Interferon or Tumor Necrosis Factor (TNF) in the serum of these patients; however, the supernatant of LAK cells did contain Interferon and TNF which could be neutralized with appropriate antibodies.

These results suggest that the etiology of this anemia is multi-factorial. Administration of recombinant erythropoietin (Ep) may be of benefit in some of these patients.

Keywords

Toxicity Agar Anemia Interferon Erythropoietin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    . Zanjani, E.D., and J.L. Ascensao. 1989. Erythropoietin. Transfusion 29: 46.CrossRefGoogle Scholar
  2. 2.
    . Erslev, A.J., J. Wilson, and J. Caro. 1987. Erythropoietin titers in anemic, nonuremic patients. J. Lab. Clin. Med. 109: 429.PubMedGoogle Scholar
  3. 2.
    . Erslev, A.J., J. Wilson, and J. Caro. 1987. Erythropoietin titers in anemic, nonuremic patients. J. Lab. Clin. Med. 109: 429.PubMedGoogle Scholar
  4. 4.
    . Ascensao, J.L., R. Pahwa, and E.A. Kagan, et al. 1976. Aplastic anemia: evidence for an immunologic mechanism. Lancet 1: 669.PubMedCrossRefGoogle Scholar
  5. 5.
    . Meytes, D., A. Ma, and J.A. Ortega, et al. 1979. Human erythroid burst-promoting activity produced by phytohemoglutinin-stimulated radioresistant peripheral blood mononuclear cells. Blood 54: 1050.PubMedGoogle Scholar
  6. 6.
    . Banisadre, M., R.C. Ash, and J.L. Ascensao, et al. 1981. Suppression of erythropoiesis by mitogen-activated T-lymphocytes in vitro. In “Experimental Hematology Today”. S.J. Baum, G.D. Gedney, A. Kahn, eds. Karger, NY pp 151.Google Scholar
  7. 7.
    . Zoumbos, N.C., J.Y. Djeu, and N.S. Young. 1984. Interferon is the suppressor of hematopoiesis generated by stimulating lymphocytes in vitro. J. Immunol. 133: 769.PubMedGoogle Scholar
  8. 8.
    . Smith, K.A. 1980. T-cell growth factor. Immunol. Rev. 51: 337.Google Scholar
  9. 9.
    . Rosenberg, S.A., M.T. Lotze, and L.M. Muul, et al. 1985. Observations on the systemic administration of autologous lymphokine-activated killer cell and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313: 1485.PubMedCrossRefGoogle Scholar
  10. 10.
    . Liu, S-J., J.L. Ascensao, and E. Podack, et al. 1987. Cellular interactions on hemopoiesis. Blood Cells 13: 101.PubMedGoogle Scholar
  11. 11.
    . Ascensao, J.L., G.M. Vercellotti, and H.S. Jacobs, et al. 1984. Role of endothelial cells in human hematopoiesis: modulation of mixed colony growth in vitro. Blood 63: 553.PubMedGoogle Scholar
  12. 12.
    . Phillips, P.G., G. Chikappa, and P.S. Brinson. 1983. A Triple staining technique to evaluate monocyte neutrophil and eosinophil proliferation in soft agar cultures. Exp. Hematol. 11: 10.Google Scholar
  13. 13.
    . Ettinghausen, S.E., J.G. Moore, and D.E. White, et al. 1987. Hematological effects of immunotherapy with lymphokine activated killer cells and recombinant interleukin-2 in cancer patients. Blood 69: 1654.PubMedGoogle Scholar
  14. 13.
    . Ettinghausen, S.E., J.G. Moore, and D.E. White, et al. 1987. Hematological effects of immunotherapy with lymphokine activated killer cells and recombinant interleukin-2 in cancer patients. Blood 69: 1654.PubMedGoogle Scholar
  15. 15.
    . Mamus, S.W., S. Beck-Schroder, and E. Zanjani. 1985. Supression of normal human erythropoiesis by gamma interferon in vitro: role of monocytes and T-cells. J. Clin. Invest. 75: 1496.PubMedCrossRefGoogle Scholar
  16. 16.
    . Zoumbos, N., E. Raefsky, and N. Young. 1986. Lymphokines and hematopoiesis. Prog. Hemat. 14: 201.Google Scholar
  17. 17.
    . Degliantoni, G., M. Murphy, and M. Kobayashi, et al. 1985. Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. J. Exp. Med.S 162: 1512.PubMedCrossRefGoogle Scholar
  18. 18.
    . Pistoia, V., R. Ghio, and A. Nocera, et al. 1985. Large granular lymphocytes have a promoting activity on human peripheral blood erythroid burst forming units. Blood 65: 464.PubMedGoogle Scholar
  19. 19.
    . Burdach, S.E.G., and L.J. Levitt. 1987. Receptor-specific inhibition of bone marrow erythropoiesis by recombinant DNA-derived interleukin-2. Blood 69: 1368.PubMedGoogle Scholar
  20. 20.
    . Azuma, C, T. Tanabe, and M. Konishi, et al. 1986. Cloning of cDNA for human T-cell replacing factor (IL-5J and comparison with the murine homologue. Nucleic Acid Res. 14: 9149.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Joao L. Ascensao
    • 1
  • Shu-Jun Liu
    • 2
  • Jaime Caro
    • 3
  • Eckhard Podack
    • 4
  • Abraham Mittelmann
    • 5
  • Esmail D. Zanjani
    • 6
  • Yu-Liang Zhao
    • 2
  1. 1.Department of Medicine, Division of Hematology-Oncology, Room L-3062University of Connecticut Health CenterFarmingtonUSA
  2. 2.Beijing Institute for Cancer ResearchBeijingPeople's Republic of China
  3. 3.Cardeza Foundation for Hematologic ResearchJefferson Medical CollegePhiladelphiaUSA
  4. 4.Comprehensive Cancer CenterUniversity of MiamiMiamiUSA
  5. 5.Department of Medicine, Division of Neoplastic DiseasesNew York Medical CollegeValhallaUSA
  6. 6.University of Nevada School of MedicineRenoUSA

Personalised recommendations