Skip to main content

Dynamic End-Tidal Forcing Technique: Modelling the Ventilatory Response to Carbon Dioxide

  • Chapter
Modeling and Parameter Estimation in Respiratory Control

Abstract

The chemical regulation of breathing, the primary purpose of which is to ensure CO2, O2 and H+ homeostatis in arterial blood and brain tissue, involves two major chemosensitive structures, the central chemoreceptors and the peripheral chemoreceptors. In spite of much experimental work a definite answer to the question of the relative importance of the peripheral and the central chemoreceptors in the control of breathing is still lacking. Different classes of techniques have been used to separate the contributions of these receptors to the ventilatory responses following changes in blood gas tensions and acid-base disturbances (see ref. 1 and references cited therein). Among the different classes of techniques dynamic analysis methods are particularly attractive because they can be applied non invasively. The dynamic end-tidal forcing (DEF) technique, developed by Swanson and Bellville in 1970’s, is perhaps the most promising. This technique consists of three elements: 1) accurate breath-to- breath control of the end-tidal CO2 and O2, so that they can be forced to follow a prescribed pattern in time together with the measurement of the breath-to-breath ventilation; 2) mathematical modelling of the input-output relationship of the respiratory controller; 3) techniques to estimate the model parameters from the noisy input-output data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. DeGoede, A. Berkenbosch, D.S. Ward, J.W. Bellville and C.N. Olievier, Comparison of chemoreflex gains obtained with two different methods in cats, J. Appl. Physiol 59: 170–179 (1985).

    Google Scholar 

  2. M.C.K. Khoo and S.M. Yamashiro, Models of control of breathing, in: “Respiratory Physiology: an analytical approach, vol 40, Lung Biology in Health and Disease,” H.K. Chang and M. Paiva, eds., Marcel Dekker, New York (1989).

    Google Scholar 

  3. J.W. Bellville, D.S. Ward and D. Wiberg: Modelling and identi-fication, in: “Systems and Control Encyclopedia: Theory, Technology, Applications,” H.G. Singh, ed., Pergamon Press, Oxford (1988).

    Google Scholar 

  4. G.D. Swanson and J.W. Bellville, Step changes in end-tidal CO2: Methods and impli-cations, J. Appl Physiol 39: 377–385 (1975).

    PubMed  CAS  Google Scholar 

  5. D.M. Wiberg, J.W. Bellville, 0. Brovko, R. Maine and T.C. Tai, Modelling and pa-rameter identification of the human respiratory system, IEEE Trans. Auto. Cont.: 24, 716–720 (1979).

    Article  Google Scholar 

  6. J.W. Bellville, B.J. Whipp, R.D. Kaufman, G.D. Swanson, K.A. Aqleh and D.M. Wiberg, Central and peripheral chemoreflex loop gain in normal and carotid body- resected subjects, J. Appl Physiol 48: 843–853 (1979).

    Google Scholar 

  7. L. Ljung, “System Identification: Theory for the user,” Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1987).

    Google Scholar 

  8. G.A.F. Seber and C.J. Wild, “Nonlinear regression,” John Wiley and sons, New York (1989).

    Book  Google Scholar 

  9. A. Dahan, I.C.W. Olievier, A. Berkenbosch and J. DeGoede, Modelling the dynamics of the ventilatory response to carbon dioxide in healthy human subjects during normoxia, in: “Respiratory Control: A Modelling Perspective,” G.D. Swanson and F.S. Grodins, eds., Plenum Publishing Co., New York, in press.

    Google Scholar 

  10. A. Berkenbosch, J. DeGoede, D.S. Ward, C.N. Olievier and J. VanHartevelt, Dynamic response of the peripheral chemoreflex loop to changes in end-tidal CO2, J. Appl. Physiol. 64: 1779–1785 (1988).

    PubMed  CAS  Google Scholar 

  11. A. Berkenbosch, D.S. Ward, C.N. Olievier, J. DeGoede and J. Hartevelt, Dynamics of ventilatory response to step changes in Pco2 of blood perfusing the brain stem, J. Appl. Physiol 66: 2168–2173 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. D.S. Ward, J. DeGoede, D.M. Wiberg, A. Berkenbosch and J.W. Bellville, Analysis of a ventilatory noise model in man and cats, in: “Modelling and the control of breathing”, B.J. Whipp and D.M. Wiberg, eds., Elsevier Publishing Co., Amsterdam (1983).

    Google Scholar 

  13. D.S. Ward and J.W. Bellville, Effect of intravenous dopamine on hypercapnic ventila-tory response in humans, J. Appl. Physiol. 55: 1418–1425 (1983).

    PubMed  CAS  Google Scholar 

  14. A. Berkenbosch, J. DeGoede, C.N. Olievier and D.S. Ward, Effect of exogenous dopamine on the hypercapnic ventilatory response in cats during normoxia, Pfluegers Archiv 407: 504–509 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. A. Berkenbosch, C.N. Olievier and J. DeGoede, Effects of dopamine antagonists haloperi- doland domperidone on the normoxic ventilatory response to CO2 in cats, Pfluegers Archiv 411: 278–282 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. C.N. Olievier, A. Berkenbosch, J. DeGoede and E.W. Kruyt, Almitrine bismesylate and the central and peripheral ventilatory response to CO2, J. Appl. Physiol. 63: 66–74 (1987).

    PubMed  CAS  Google Scholar 

  17. P.A. Robbins, Evidence for interaction between the contribution to ventilation from the central and peripheral chemoreceptors in man, J. Physiol. 401: 503–518 (1988).

    PubMed  CAS  Google Scholar 

  18. P.A. Robbins, The ventilatory response of the human respiratory system to sine waves of alveolar carbon dioxide and hypoxia, J. Physiol. 350: 461–474 (1984).

    PubMed  CAS  Google Scholar 

  19. A. Berkenbosch, J.G. Bovill, A. Dahan, J. DeGoede and I.C.W. Olievier, The venti-latory CO2 sensitivities from Read’s rebreathing method and the steady-state method are not equal in man, J. Physiol. 411: 367–377 (1989)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

DeGoede, J., Berkenbosch, A. (1989). Dynamic End-Tidal Forcing Technique: Modelling the Ventilatory Response to Carbon Dioxide. In: Khoo, M.C.K. (eds) Modeling and Parameter Estimation in Respiratory Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0621-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0621-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7896-2

  • Online ISBN: 978-1-4613-0621-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics