Safety and Environmental Impact of Iter/Net

  • J. Raeder
  • W. Gulden

Abstract

Deuterium - tritium fusion is a nuclear energy source. Its safety and environmental (S&E) aspects are being systematically considered in all of the on-going world’s major fusion programmes. There are broad efforts, of which ITER/NET are parts to develop appropriate design philosophies and procedures that recognize and properly account for the specific characteristics of the fusion energy source and the technologies that will be employed in its utilization.

Keywords

Combustion Graphite Convection Steam Helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ITER Concept Definition, Report ITER-1, Oct 1988.Google Scholar
  2. 2.
    W, Gulden, J. Raeder. Safety Aspects of the Next European Torus. Fusion Technology, Vol. 14, No. 1, July 1988.Google Scholar
  3. 3.
    F. Engelmann, M.F.A. Harrison, R. Albanese, K. Borrass, 0. De Barbieri,E.S. Hotston, A. Nocentini, J-G. Wegrowe, G. Zambotti. Next European Torus Physics Basis. Fusion Technology, Vol. 14, No. 1, July 1988.Google Scholar
  4. 4.
    C. Ponti. Activation calculations for NET-DN. Tech. Note No. 1.87.116, JRC Ispra, Oct. 1987. Google Scholar
  5. 5.
    J. Raeder. On NET afterheat under loss of active cooling conditions - transient analyses. NET Internal Note, NET/88/IN-011, April 1988.Google Scholar
  6. 6.
    H. Kottowski, V. Renda and G. Kuhlboersch. State of the Art of Water-Cooled LiPb Fusion Reactor Blanket Safety. Proc. 4th European Nuclear Conf., Geneva, Switzerland, June 1–6, 1986.Google Scholar
  7. 7.
    H. Katheder. NET Team, private communication, Sept. 1988.Google Scholar
  8. 8.
    S. Brereton Cryogen release; part of the memo Passive safety in the ITER reactor vault and building design, personal communication, June 1989.Google Scholar
  9. 9.
    K. Koizumi, J. Minervini, A. Kostenko, N. Mitchell, J. Miller (ed.). Report ITER-EL-MG-l-9-U-l; LLNL-ITER-89–020, p. 17.Google Scholar
  10. 10.
    P. Dinner, M. Chazalon, D. Evans, F. Fauser, M. Iseli and C.H. Wu. Next European Torus Plasma Exhaust and Fuel Processing Systems. Fusion Technology, Vol. 14, No.l, July 1988.Google Scholar
  11. 11.
    C.H. Wu. Graphite and analysis of critical problems. NET Internal Note, NET/85/IN-079, October 1988.Google Scholar
  12. 12.
    R.A. Causey. The Interaction of Tritium with Graphite and Its Impact on Tokamak Operations. 8th PSI, Juelich, May 1988.Google Scholar
  13. 13.
    ITER shield and blanket work package report. ANL/FPP/88–1, June 1988, p. 7–11.Google Scholar
  14. 14.
    C. Ponti. Activation calculations for NET IIIA and FCTR. Technical Note 1.05.Bl.85.123, JRC Ispra, Sept. 1985.Google Scholar
  15. 15.
    G.J. Butterworth. Low activation structural materials for fusion. Invited Lecture, 15th SOFT - Utrecht, The Netherlands, September 1988. To be published in this issue of FED.Google Scholar
  16. 16.
    L. Giancarli. On the radiological behaviour of first wall fusion structural materials. Culham Report, CLM-R275, Feb. 1987.Google Scholar
  17. 17.
    C. Ponti. JRC Ispra, private communication, March 1988.Google Scholar
  18. 18.
    E. Salpietro, R. Albanese, E. Coccorese, R. Martone, N. Mitchell, G. Rubinacci. Next European Torus Operation Cycle. Fusion Technology, Vol. 14, No. 1, July 1988.Google Scholar
  19. 19.
    K.P. Juengst. Ergebnisbericht ueber Forschungs- und Entwicklungsarbeiten 1987. Institut fuer technische Physik, KfK 4395, March 1988, p. 24 ff.Google Scholar
  20. 20.
    F. Mazille. First wall and blanket analysis. Report CEA/IPSN S+E 4.1.1.1/RE1/88.01, March 1988.Google Scholar
  21. 21.
    J. Raeder. On hydrogen production by hot graphite reacting with water/steam. NET Internal Note, NET/88/IN-02, March 1988.Google Scholar
  22. 22.
    H. Jahn. Reaction of graphite with water/steam-modelling of combustible gas production, distribution and consequence analysis, Interim Report No 2, Gesellschaft für Reaktorsicherheit, GRS-A-1517, Jan 1989.Google Scholar
  23. 23.
    E. Zolti. Thermal and mechanical behaviour of CFC/TZM divertor elements under loss of coolant conditions, Report ITER-IL-PC-8-9-E-15, June 1989.Google Scholar
  24. 24.
    H.Th. Klippel. Analysis of thermal hydraulic transients of the water -cooled eutectic LiPb blanket of NET. Fusion Engineering and Design, 6, 2, May 1988, p. 79.CrossRefGoogle Scholar
  25. 25.
    R. Jakeman, B. Autrusson, M. Mezola. NET first wall and mock-up thermomechanical analyses, Report ITER-IL-PC-6–9-E-12, June 1989.Google Scholar
  26. 26.
    V. Renda, L. Papa. Thermal effects due to residual power on the reactor internals. Private communication, Jan. 1987; for a similar case (5 outboard blanket modules) see Technical Note 1.87.50, JRC Ispra, April 1987.Google Scholar
  27. 27.
    J. Raeder. On NET afterheat under loss of active cooling conditions — revised transient analyses. NET Internal Note, NET/88/IN-44.Google Scholar
  28. 28.
    H. Th. Klippel. Numerical Analysis of the Dynamic Response of Water-Cooled Liquid-LiPb Breeder Blankets to Coolant Tube Rupture. Nucl. Eng. Design/Fusion, 3, 4, July 1986.Google Scholar
  29. 29.
    V. Renda. JRC Ispra, privately communicated calculations.Google Scholar
  30. 30.
    F. Mazille, H. Djerassi. Analysis of LOCA/LOFA Risks for the Water Cooled First Wall of a NET Type Fusion Reactor. 15th SOFT- Utrecht, The Netherlands, September 1988.Google Scholar
  31. 31.
    H. Jahn. Reaction of graphite with water steam-modelling of combustible gas production, distribution and consequence analysis, Final Report, Gesellschaft für Reaktorsicherheit, GRS-A-1517, July 1989.Google Scholar
  32. 32.
    C.H. Wu. NET Team, private communication, July 1988.Google Scholar
  33. 33.
    V. Renda, A. Soria. JRC Ispra, privately communicated calculations on LOCA/radiative energy transfer, July 1988.Google Scholar
  34. 34.
    J. Raeder. On NET afterheat under loss of active cooling conditions - transient analyses including the TF coils as heat sinks. NET Internal Note, NET/89/IN-016.Google Scholar
  35. 35.
    C. Ponti. Activation calculations for a MANET-2 first wall (NET-DN), JRC ISPRA, private communication, October 1987.Google Scholar
  36. 36.
    W. Gulden, J. Raeder, H.H. Gorenflo: On NET afterheat under loss of active cooling conditions - transient analyses for the case of a tungsten containing shield. NET Internal Note, NET/88/IN-017.Google Scholar
  37. 37.
    V. Renda. JRC Ispra, privately communicated calculations, May 1987.Google Scholar
  38. 38.
    E. Salpietro, F. Casci, F. Farfaletti-Casali, F. Fauser, H. Gorenflo, L. Ingala, T. Kaltner, G. Malavasi, J. Minervini, N. Mitchell, R. Poehlchen. Next European Torus Basic Machine. Fusion Technology, Vol. 14, No. 1, July 1988.Google Scholar
  39. 39.
    H.Th. Klippel. On safe decay heat removal from NET shielding blanket by natural convection cooling, IAEA Technical Committee Meeting on “Fusion Reactor Safety”, Jackson, USA, April 1989.Google Scholar
  40. 40.
    A.V. Jones, P. Rocco. Air Ingress Accidents in Tokamaks. 15th SOFT - Utrecht, The Netherlands, September 1988.Google Scholar
  41. 41.
    L. Deleanu, H. Djerassi, A.V. Jones, P. Rocco. Safety Analysis Related to the Possible Release of Activated Erosion Dust in Fusion Reactors. 14th SOFT, Avignon — France, September 1986.Google Scholar
  42. 42.
    J. Charuau, H. Djerassi. First Experiment on Erosion Dust Measurement in a Tokamak. 15th SOFT, Utrecht - The Netherlands, September 1988.Google Scholar
  43. 43.
    M.E.P. Wykes. Safety Analysis of Torus Vacuum Breach. JET Report, JET-P(88)37, 1988. Google Scholar
  44. 44.
    L. Giancarli, H. Djerassi. Radiological Problems Related with the Plasma Induced Erosion of the NET First Wall. 15th SOFT — Utrecht, The Netherlands, September 1988. Google Scholar
  45. 45.
    Y.R. Crutzen, M. Biggio, F. Farfaletti-Casali. Electromagnetic effects on the NET first wall caused by a plasma disruption event. 14th SOFT, Avignon — France, September 1986.Google Scholar
  46. 46.
    H. Th. Klippel. Thermal behaviour of bare and coated first walls under severe plasma disruption conditions. ISFNT, Tokyo, April 1988.Google Scholar
  47. 47.
    D.F. Holland. Results privately communicated, June 1989.Google Scholar
  48. 48.
    “Council Directive of 15th July 1980, amending the Directives laying down the basic safety standards for the health protection of the general public and workers against the dangers of ionizing radiations”, Official Journal of the European Communities, 23, L246, September 1980. Google Scholar
  49. 49.
    G. Casini, C. Ponti, P. Rocco. Environmental Aspects of Fusion Reactors, 1985. Technical Note I.04.Bl.85.156, JRC Ispra, December 1985.Google Scholar
  50. 50.
    S. Piet. Effluent Benchmark Calculation for ITER, SJP-01–89, Attachment 1-Tritium Effluent Benchmark Calculations (Task 1), Jan 20, 1989.Google Scholar
  51. 51.
    L. Devell, 0. Edlund. Environmental radiation doses from tritium releases. Fusion Reactor Safety. Report of a technical committee meeting on fusion reactor safety, Culham 3–7 November 1986,IAEA-TECDOC-440.Google Scholar
  52. 52.
    O. Edlund. Radiation Doses from Atmospheric Pulse Releases of Tritium as HT and HTO. Studsvik Report NP-88/72, June 1989.Google Scholar
  53. 53.
    H. Djerassi, W. Gulden. Overview of the Tritium Release Experiment in France. Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications. Toronto, Canada, May 1–6, 1988.Google Scholar
  54. 54.
    H. Djerassi, B. Lesigne. Environmental Tritium Behaviour, French Experiment. Final Report, NET Contract No.85–074/GSA, Issue 88/03.Google Scholar
  55. 55.
    R.M. Brown, G.L. Ogram, F.S. Spencer, CD. Burnham. An Overview of Experiments at Chalk River on HT Dispersion in the Environment. Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications. Toronto, Canada, May 1–6, 1988.Google Scholar
  56. 56.
    Y. Belot, H. Clerc, J. Guenot, H. Djerassi, W. Gulden. Assessment of the Environmental Impact of a Tritium Gas Release: Resuspension of HTO from Soil Surface. Presented at the IAEA Technical Committee Meeting on Fusion Reactor Safety, Culham, U.K., November 3–7, 1986.Google Scholar
  57. 57.
    S. Piet, S. Brereton. Status of U.S. Contributions to ITER Safety and Environment, SJP-37–88, Attachment 2 — Activation Product Release Benchmark Calculations (Task 2), December 6, 1988.Google Scholar
  58. 58.
    “Present situation and prospects in the field of radioactive waste management in the European Community”, Documents of the Commission of The European Communities, COM (87) 312.Google Scholar
  59. 59.
    Standardization of Radioactive Waste Categories, IAEA – Technical Reports Series No. 101 (1970).Google Scholar
  60. 60.
    Radioactive Waste, Vol. I, first report from the Environment Committee of the House of Commons, Session 1985–86.Google Scholar
  61. 61.
    USNRC, 10 CFR Part 61: Licensing requirements for land disposal of radioactive waste. Final Rule. Federal Register (47 FR 57446), 27 December 1982.Google Scholar
  62. 62.
    P. Guetat, “Fusion Reactor Wastes: Technical and Radiological Aspects for the Management of Wastes from NET and a Commercial Reactor”, presented at the IAEA Technical Committee Meeting on Fusion Reactor Safety, Culham, U.K., November 3–7, 1986.Google Scholar
  63. 63.
    K. Broden, A. Hultgren, G. Olsson, H. Djerassi, P. Giroux, J-L. Rouyer, Fusion Waste Mangement - Safety and Environment Studies 1983–84 - European Fusion Technology Programme, EUR-FU/XII-361/85/35 (1985).Google Scholar
  64. 64.
    Prescriptions techniques relatives a 1’exploitation du site de stockage de la Manche. Annexe II a la lettre SIN A 693/85 du 06.02.85. Service Central de Surete des Installations Nucleaires, Ministère de 1’Industrie et de la Recherche, France (1985).Google Scholar
  65. 65.
    D. Ochem, Metallic Tritiated Waste Reprocessing — a Compendium of Know How Gained in Valduc, CEA Progress report. To be published.Google Scholar
  66. 66.
    SKBF/KBS Radioactive Waste Management Plan, Plan 82, Part 2, Facilities and Costs, SKBF/KBS Technical Report 82–09:2 (1982).Google Scholar
  67. W. Gulden, C. Ponti, P. Guetat, D. Ochem, K. Broden, G. Olsson, J. Butterworth. “Fusion Waste Management — Safety and Environment Studies 1985–86”, EUR-FU/XII-80/87/72, Commission of the European Communities (1987).Google Scholar
  68. 68.
    W. Gulden, C. Ponti, Ph. Guetat, K. Broden, G. Olsson, G.J. Butterworth. Waste Management for NET. 15th SOFT — Utrecht, The Netherlands, September 1988.Google Scholar
  69. 69.
    C. Ponti. Comparison of low activation materials and AISI 316. JRC Ispra, 1988, privately communicated calculations, August 19 88.Google Scholar
  70. 70.
    C Ponti. Fusion Reactor Materials To Minimize Long Living Radioactive Waste, Paper presented at the International Symposium on Nuclear Technology, Tokyo, April 10–15 (1988). Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. Raeder
    • 1
  • W. Gulden
    • 1
  1. 1.The NET Teamc/o Max-Planck-Institut für PlasmaphysikGarching bei MuenchenGermany

Personalised recommendations