Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 187))

Abstract

The germination behavior of light-dependent seeds in response to temperature change, growth hormones, and chemical regulators displays broad and complex light requirements. Such treatments, as well as the varying soil temperature of the natural environment, induce high levels of germination in darkness, or very high light sensitivity for promotion of germination. One aspect of such behavior has been the absence of clear correlations between germination response and phototransformation of the photoreceptor, phytochrome. Interpretation of behavior in terms of underlying mechanisms has therefore been difficult. Research progress during the past decade in several laboratories now indicates the involvement of sensitization of the phototransduction system to very low levels of the active, far- red absorbing form of phytochrome, Pfr. Several lines of evidence now demonstrate phytochrome to be a molecular dimer. Studies of sensitization have led to the development and support of a dimeric model for the molecular action of phytochrome. Although additional direct evidence is yet required, these and related studies indicate a role of increased membrane fluidity in sensitization. This report summarizes progress and discusses some of the current questions in this research area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Axelrod, D., 1983, Lateral motion of membrane proteins and biological function, J. Membrane Biol. , 75:1.

    Article  CAS  Google Scholar 

  • Bartley, M. R., and Frankland, B., 1982, Analysis of the dual role of phytochrome in the photoinhibition of seed germination, Nature, 300:750.

    Article  CAS  Google Scholar 

  • Berridge, M. J., 1987, Inositol triphosphate and diacylglycerol: Two interacting second messengers, Ann. Rev. Biochem. , 56:159.

    Article  PubMed  CAS  Google Scholar 

  • Brockmann, J., Rieble, S., Kazarinova-Fukshansky, N., Seyfried, M., and Schafer, E., 1987, Phytochrome behaves as a dimer in vivo, Plant Cell Environ. , 10:105.

    CAS  Google Scholar 

  • Chadoeuf-Hannel, R., and Taylorson, R. B., 1985, Anesthetic stimulation of Amaranthus albusseed germination: Interaction with phytochrome, Physiol.Plant., 65:451.

    Article  CAS  Google Scholar 

  • Cone, J. W., Jaspers, P. A. P. M., and Kendrick, R. E., 1985, Biphasic fluence-response curves for light induced germination of Arabidopsis thalianaseeds, Plant Cell Environ., 8:605.

    Article  Google Scholar 

  • Bliss, D., and Smith, H., 1985, Penetration of light into soil and its role in the control of seed germination, Plant Cell Environ., 8:475.

    Article  Google Scholar 

  • Duke, S. O., Egley, G. H., and Reger, B. J., 1977, Model for variable light sensitivity in imbibed dark-dormant seeds, Plant Physiol., 59:244.

    Article  PubMed  CAS  Google Scholar 

  • Frankland, B., 1986, Perception of light quantity, in: “Photomorphogenesis in Plants,” R. E. Kendrick and G. H. M. Kronenberg, ed., Martinus Nijhoff Publ., Dordrecht, p. 219.

    Google Scholar 

  • Hartmann, K. M., and Nezadal, W., 1989, Efficient photocontrol of weed in crop fields, Proc. Eur. Symp. Photomorphogenesis in Plants, Sept. 24–29, Freiburg i. Br., W. Germany, p. 65.

    Google Scholar 

  • Hillman, W. S., 1967, The physiology of phytochrome, Ann. Rev. Plant Physiol. , 18:30.

    Article  Google Scholar 

  • Jones, A. M., and Erickson, H. P., 1989, Domain structure of phytochrome from Avena sativavisualized by electron microscopy, Photochem. Photobiol. , 49:479.

    Article  PubMed  CAS  Google Scholar 

  • Jones, A. M., and Quail, P. H., 1986, Quaternary structure of 124-kilo- dalton phytochrome from Avena sativaL., Biochemistry, 25:2987.

    Article  CAS  Google Scholar 

  • Mancinelli, A. L., and Rabino, I., 1978, The “high irradiance responses” of plant photomorphogenesis, Bot. Rev. , 44:129.

    Article  CAS  Google Scholar 

  • Mandoli, D. F,. and Briggs, W. R., 1981, Phytochrome control of two low- irradiance responses in etiolated oat seedlings, Plant Physiol. 67:733.

    Article  PubMed  CAS  Google Scholar 

  • Memon, A. R., Chen, Q., and Boss, W. F., 1989, Inositol phospholipids activate plasma membrane ATPase in plants, Biochem. Biophys. Res. Commun. , 162:1295.

    Article  PubMed  CAS  Google Scholar 

  • Morse, M. J., Crain, R. C., and Satter, R. L., 1987, Light-stimulated inositolphospholipid turnover in Samanea samanleaf pulvini, Proc. Natl. Acad. Sci. U.S.A. , 84:7075.

    Article  PubMed  CAS  Google Scholar 

  • Napier, R. M., and Smith, H., 1987, Photoreversible association of phytochrome with membranes II. Reciprocity tests and a model for the binding reaction, Plant Cell Environ. , 10:391.

    CAS  Google Scholar 

  • Pratt, L. H. and Marmé, D., 1976, Red light-enhanced phytochrome pellet- ability: Re-examination and further characterization, Plant Physiol. 58:686.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, P. J.., 1988, Regulation of membrane fluidity in plants, in: Advances in Membrane Fluidity,, Vol. 3: “Physiological Regulation of Membrane Fluidity”, R. C. Aloia, C. C. Curtain, and L. M. Gordon, ed., Alan R. Liss, Inc., New York, p. 293.

    Google Scholar 

  • Rethy, R., Dedonder, A., De Petter, E., Van Wiemeersch, L., Frederricq, H., De Greef, J., Stevaert, H., and Stevens, H., 1987, Biphasic fluence- response curves for phytochrome-mediated Kalanchoeseed germination sensitized by gibberellic acid, Plant Physiol., 83:126.

    Article  PubMed  CAS  Google Scholar 

  • Shinkle, J. R., and Briggs, W. R., 1984, Indole-3-acetic acid sensitization of phytochrome-controlled growth of coleoptile sections, Proc. Nat. Acad. Sci.USA, 81:374.

    Article  Google Scholar 

  • Shinkle, J. R. and Briggs, W. R., 1985, Physiological mechanism of the auxin-induced increase in light sensitivity of phytochrome-mediated growth responses in Avenacoleoptile sections, Plant Physiol. 79:349.

    Article  PubMed  CAS  Google Scholar 

  • Small, J. G. C., Spruit, C. J. P., Blaauw-Jansen, G., and Blaauw, O. H., 1979, Action spectra for light-induced germination in dormant lettuce seeds, Planta, 144: 125.

    Article  CAS  Google Scholar 

  • Smith, H., 1983, Is Pfr the active form of phytochrome?,Phil. Trans. R. Soc. Lond. B, 303: 443.

    Article  Google Scholar 

  • Stokes, P., 1965, Temperature and seed dormancy, in: “Encyclopedia of Plant Physiology”, Vol. XV/2, Springer-Verlag, Berlin, p. 746.

    Google Scholar 

  • Taylorson, R. B., and Hendricks, S. B., 1979, Overcoming dormancy in seeds with ethanol and other anesthetics, Planta, 145:507.

    Article  CAS  Google Scholar 

  • Thompson, G. A., Jr., 1983, Mechanisms of homeoviscous adaptation in membranes, in: “Cellular Acclimatization to Environmental Change,” A. R. Cousins and P. Sheterline, ed., Cambridge University Press, p. 33

    Google Scholar 

  • Tokutomi, s., Nakasako, M., Sakai, J., Kataoka, M., Yamamoto, K. T., Wada, M., Tokunaga, F., and Furuya, M., 1989, A model for the dimeric molecular structure of phytochrome based on small-angle X-ray scattering, FEBS Lett., 247:139.

    Article  CAS  Google Scholar 

  • Uematsu, H., Hosoda, H., and Furuya, M., 1981, Biphasic effect of red light on the growth of coleoptiles in etiolated barley seedlings. Bot, Mag. Tokyo, 94:273.

    Article  Google Scholar 

  • VanDerWoude, W. J., 1985, A dimeric mechanism for the action of phytochrome: Evidence from photothermal interactions in lettuce seed germination, Photochem. Photobiol. , 42:655.

    Article  CAS  Google Scholar 

  • VanDerWoude, W. J., 1987, Application of the dimeric model of phytochrome action to high irradiance responses, in: “Phytochrome and Photoregulation in Plants,” M. Furuya, ed., Academic Press, New York, p. 249

    Google Scholar 

  • VanDerWoude, W. J., and Toole, V. K., 1980, Studies on the mechanism of enhancement of phytochrome-dependent lettuce seed germination by prechilling. Plant Physiol. . 58: 686.

    Google Scholar 

  • Widell, K.-O., Sundquist, C., and Virgin, H. I., 1981, The effects of SAN 9789 and light on phytochrome in the germination of lettuce seeds, Physiol. Plant., 52:325.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

VanDerWoude, W.J. (1989). Phytochrome and Sensitization in Germination Control. In: Taylorson, R.B. (eds) Recent Advances in the Development and Germination of Seeds. NATO ASI Series, vol 187. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0617-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0617-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7894-8

  • Online ISBN: 978-1-4613-0617-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics