Skip to main content

Biochemical Adaptations to Anoxia in Rice and Echinochloa Seeds

  • Chapter
Recent Advances in the Development and Germination of Seeds

Part of the book series: NATO ASI Series ((NSSA,volume 187))

  • 255 Accesses

Abstract

The genus Echinochloa contains some of the most well studied flood tolerant plant species. These plants are interesting for their extreme flood tolerance, their economic importance as weeds in numerous crops around the world, particularly in rice (Oryza sativa [L.]), and because they represent a complete spectrum of flood tolerance within one genus (Barrett and Wilson, 1981, Kennedy et al., 1987b). Of the five species studied here, E. phyllopogon (Stev.) Koss and E. oryzoides (Ard.) Fritsch Clayton are flood tolerant and confined to aquatic environments. E. muricata (Beauv.) Fern is semi-tolerant and found along streambanks, whereas E. crus- galli (L.) Beauv. and E. crus- pavonis (H.B.K.) Schult. are intolerant and found only in drier sites (Barrett and Wilson, 1981). In nature, these species can all be found in or around the rice agro-ecosystem. In the laboratory, all of the species except E. crus- pavonis are able to germinate and grow in a strict N2 atmosphere, as does rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey-Serres J., Kloeckener-Gruissem, B., and Freeling, M., 1988, Genetic and molecular approaches to the study of the anaerobic response and tissue specific gene expression in maize, Plant Cell Environ. , 11:351.

    Article  CAS  Google Scholar 

  • Barrett, S. C. H., and Wilson, B. F., 1981, Colonizing ability in the Echinochloa crus-qallicomplex (barnyardgrass). I. Variation in life history, Can. J. Bot. , 59:1844.

    Article  Google Scholar 

  • Bewley, J. D., and Black, M., 1983, “Physiology and Biochemistry of Seeds in Relation to Germination,” Springer-Verlag, Berlin.

    Google Scholar 

  • Bozarth, C. S., 1983, Greening and photosynthesis in anaerobically grown Echinochloa crus-cralliand Oryza sativaafter exposure to air. Ph.D. Dissertation, Washington State University, Pullman, WA.

    Google Scholar 

  • Cobb, B. G., and Kennedy, R. A., 1987, Distribution of alcohol dehydrogenase in roots and shoots of rice ( Orvza sativa) and Echinochloaseedlings, Plant Cell Environ. , 10:633.

    Article  CAS  Google Scholar 

  • Crawford, R. M. M., 1977, Tolerance of anoxia and ethanol metabolism in germinating seeds, New Phytol. , 79: 511.

    Article  CAS  Google Scholar 

  • Everard, J. D., and Kennedy, R. A., 1985, Physiology of lipid metabolism during anaerobic germination of Echinochloa crus-qallivar. oryzicola, Plant Physiol. , 77:S-98.

    Google Scholar 

  • Fox, T. C., and Kennedy, R. A., 1988, Modeling of energy requirements for growth of barnyard grass seedlings under aerobic and anaerobic conditions, Plant Physiol. , 86:S-54.

    Google Scholar 

  • Fox, T. C., and Kennedy, R. A., 1989, Mitochondrial enzymes in aerobically and anaerobically germinated seedlings of Echinochloaand rice, Planta(in press).

    Google Scholar 

  • Hoek, J. B., and Taraschi, T. F., 1988, Cellular adaptation to ethanol, TIBS, 13:269.

    PubMed  CAS  Google Scholar 

  • Jackson, M. B., 1982, An examination of the importance of ethanol in causing injury to flooded plants, Plant Cell Environ. , 8:163.

    Google Scholar 

  • Kelley, P. M., and Freeling, M., 1984, Anaerobic expression of maize fructose-1,6-diphosphate aldolase, J. Biol. Chem. , 259:14180.

    PubMed  CAS  Google Scholar 

  • Kennedy, R. A., Barrett, S. C. H., VanderZee, D., and Rumpho, M.E., 1980, Germination and seedling growth under anaerobic conditions in Echinochloa crus-qalli(barnyard grass), Plant Cell Environ. , 3:243.

    Google Scholar 

  • Kennedy, R. A., Fox, T. C., Siedow, J. N., 1987a, Activities of isolated mitochondria and mitochondrial enzymes from aerobically and anaerobically germinated barnyard grass ( Echinochloa) seedlings, Plant Physiol. , 85:474.

    Article  CAS  Google Scholar 

  • Kennedy, R. A., Rumpho, M. E., Fox, T. C., 1987b, Germination physiology of rice and rice weeds: metabolic adaptations to anoxia, in: “Plant Life in Aquatic and Amphibious Habitats,” R. M. M.Crawford, ed., Blackwell Scientific, Oxford.

    Google Scholar 

  • Kennedy, R. A., Rumpho, M. E., VanderZee, D., 1983, Germination of Echinochloa crus-cralli(barnyard grass) seeds under anaerobic conditions. Respiration and response to metabolic inhibitors, Plant Physiol. , 72: 787.

    Article  PubMed  CAS  Google Scholar 

  • Knowles, L. O., and Kennedy, R. A., 1984, Lipid biochemistry of Echinochloa crus-qalliduring anaerobic germination, Phytochem. , 23:529.

    Article  CAS  Google Scholar 

  • Laemmli U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227:680.

    Article  PubMed  CAS  Google Scholar 

  • Mocquot, B., Ricard, B., and Pradet, A., 1987, Rice embryos can express heat-shock genes under anoxia, Biochimie, 69:677.

    Article  PubMed  CAS  Google Scholar 

  • Mocquot, B., Prat, C., Mouches, C., and Pradet, A., 1981, Effect of anoxia on energy charge and protein synthesis in rice embryo, Plant Physiol. , 68:636.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira, L., 1977, Changes in ultrastructure of mitochondria of roots of Triticalesubjected to anaerobiosis, Protoplasma, 91:267.

    Article  CAS  Google Scholar 

  • Penning Vries, F. W. T., Brunsting, A. H. M., van Laar, H. H., 1974, Products, requirements and efficiency of biosynthesis. A quantitative approach, J. Theor. Biol. , 45:339.

    Article  Google Scholar 

  • de Penning Vries, F. W. T., van Laar, H. H., 1982, Simulation of Plant Growth and Crop Production. Centre for Agricultural Publications and Documentation, Wageningen.

    Google Scholar 

  • Pradet, A., Mocquot, B., Raymond, P., Morisset, C., Aspart, L., and Delsem, M., 1985, Energy metabolism and synthesis of nucleic acids and proteins under anoxic stress, in: “Cellular and Molecular Biology of Plant Stress,” J. L. Key and T. Kusuge, eds., Alan R. Liss, Inc., New York.

    Google Scholar 

  • Ramagopal, S., 1988, Regulation of protein synthesis in root, shoot and embryonic tissues of germinating barley during salinity stress, Plant Cell Environ. , 11:501.

    Article  CAS  Google Scholar 

  • Roberts, J. K. M., Chang, K., Webster, C., Callis, J., and Walbot, V., 1989, Dependence of ethanolic fermentation, cytoplasmic pH regulation, and viability on the activity of alcohol dehydrogenase in hypoxic maize root tips, Plant Physiol. , 89:1275.

    Article  PubMed  CAS  Google Scholar 

  • Rumpho, M. E., and Kennedy, R. A., 1981, Anaerobic metabolism in germinating seeds of Echinochloa crus-qalli(barnyard grass). Metabolite and enzyme studies, Plant Physiol. , 68:165.

    Article  PubMed  CAS  Google Scholar 

  • Rumpho, M. E., and Kennedy, R. A., 1983a, Activity of the pentose phosphate and glycolytic pathways during anaerobic germination of Echinochloa crus-qalli (barnyard grass) seeds, J. Exp. Bot. , 155:1.

    Google Scholar 

  • Rumpho, M. E., and Kennedy, R. A., 1983b, Anaerobiosis in Echinochloa crus-qalli(barnyard grass) seedlings. Intermediary metabolism and ethanol tolerance, Plant Physiol., 72:44.

    Article  CAS  Google Scholar 

  • Sachs, M. M., Freeling, M., and Okimoto, R., 1980, The anaerobic proteins of maize, Cell, 20:761.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A. M., and apRees, T., 1979, Pathways of carbohydrate fermentation in the roots of marsh plants, Planta, 146:327.

    Article  CAS  Google Scholar 

  • Ueda, K., and Tsuji, H., 1971, Ultrastructural changes of organelles in coleoptile cells during anaerobic germination in rice seeds, Protoplasma, 73:203.

    Article  Google Scholar 

  • VanderZee, D., and Kennedy, R. A., 1981, Germination and seedling growth in Echinochloa crus-qallivar. oryzicolaunder anoxic germination conditions, Planta, 155:1.

    Article  Google Scholar 

  • Vartapetian, B. B., Andreeva, I. N., Kozlova, G. I., and Agapova, L. P., 1977, Mitochondrial ultrastructure in roots of mesophytes and hydrophytes under anoxia after glucose feeding, Protoplasma, 91:243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Kennedy, R.A., Fox, T.C., Dybiec, L.D., Rumpho, M.E. (1989). Biochemical Adaptations to Anoxia in Rice and Echinochloa Seeds. In: Taylorson, R.B. (eds) Recent Advances in the Development and Germination of Seeds. NATO ASI Series, vol 187. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0617-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0617-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7894-8

  • Online ISBN: 978-1-4613-0617-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics