Skip to main content

Transport and Targeting of Proteins to Protein Storage Vacuoles (Protein Bodies) in Developing Seeds

  • Chapter
Recent Advances in the Development and Germination of Seeds

Part of the book series: NATO ASI Series ((NSSA,volume 187))

Summary

The vacuoles of plant cells contain a variety of proteins including acid hydrolases, storage proteins and plant defense proteins. During seed development, the central vacuoles of the storage parenchyma cells accumulate large amounts of all three classes of these proteins. We have studied the biosynthesis, transport, posttranslational modifications and accumulation in developing legume cotyledons of acid hydrolases (e.g. α-mannosidase), storage proteins (e.g. phaseolin), and plant defense proteins (e.g. phytohemagglutinin and α-amylase inhibitor). Transport of proteins to vacuoles is mediated by the secretory system (endoplasmic reticulum and Golgi apparatus) and correct targeting of protein to vacuoles requires positive sorting information. This information is contained within the polypeptide domain of the vacuolar glycoprotein phytohemagglutinin (PHA). When the gene for PHA is introduced into yeast ( Saccharomyces cerevisiae) cells, the resulting protein is targeted to yeast vacuoles. By expressing in yeast, chimeric genes consisting of the signal peptide and various portions of the PHA coding region with the gene for yeast invertase, we were able to show that the vacuolar targeting domain of PHA is in an amino- proximal region between amino acids 14 and 43 of the mature protein. Experiments are now under way to determine whether the same domain of PHA can target yeast invertase to plant vacuoles (protein bodies in tobacco seeds).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumgartner, B., Tokuyasu, K.T. ., and Chrispeels, M. J., 1978, Localization of vicilin peptidohydrolase in the cotyledons of mungbean seedlings by immunofluorescence microscopy, J. Cell Biol. >, 79:11.

    Article  Google Scholar 

  • Boiler, T., and Kende, H., 1979, Hydrolytic enzymes in the central vacuole of plant cells, Plant Physiol. >, 63:1123.

    Article  Google Scholar 

  • Boiler, T., and Vögeli, U., 1984, Vacuolar localization of ethylene-induced chitinase in bean leaves, Plant Physiol. >, 74:442.

    Article  Google Scholar 

  • Bollini, R, Ceriotti, A., Daminati, M.G., and Vitale, A., 1985, Glycosylation is not needed for the intracellular transport of phytohemagglutinin in developing Phaseolus vulgaris> cotyledons and for the maintenance of its biological activities, . Physiol Plant. >, 65:15.

    Article  CAS  Google Scholar 

  • Bowles, D. J., Marcus, S. E., Pappin, J. C., Findlay, J. B. C., Eliopoulos, E., Maylox, P. R., and Burgess, J., 1986, Posttranslational processing of concanavalin A precursors in jackbean cotyledons, J. Cell Biol. >, 102:1284.

    Article  PubMed  CAS  Google Scholar 

  • Brown, W. J., Goodhouse, J., and Farquhar, M. G., 1986, Mannose-6-phosphate receptors for lysosomal enzymes cycle between the Golgi complex and endosomes, J. Cell Biol. >, 103:1235.

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels, M. J., 1985, The role of the Golgi apparatus in the transport and posttranslational modification of vacuolar (protein body) proteins Oxford Surv. Plant Molec. Cell Biol. >, 2: 43.

    CAS  Google Scholar 

  • Craig, S., and Goodchild, D. J., 1984, Golgi-mediated vicilin accumulation in pea cotyledons is redirected by monensin and nigericin, Protoplasma>, 122: 91.

    Article  CAS  Google Scholar 

  • Dorel, C., Voelker, T. A., Herman, E. M., and Chrispeels, M. J., 1989, Transport of proteins to the plant vacuole is not by bulk flow through the secretory system, and requires positive sorting information, J. Cell Biol. >, 108:327.

    Article  PubMed  CAS  Google Scholar 

  • Faye, L., Johnson, K. D., Sturm, A. and Chrispeels, M.J., 1989, Structure, biosynthesis, and function of asparagine-linked glycans on plant glycoproteins, Physiol. Plant>., 75:309.

    Article  CAS  Google Scholar 

  • Gonzalez-Noriega, A., Grubb, J.H., Talkad, V., and Sly W. S., 1980, Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling, J. Cell Biol. >, 85:839.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, T. J. V., 1984,Synthesis and regulation of major proteins in seeds, Annu. Rev. Plant Phvsiol. >. 35:47.

    Google Scholar 

  • Higgins, T. J. V., Chrispeels, M.J., Chandler, D. M., and Spencer, D., 1983, Intracellular sites of synthesis and processing of lectin in developing pea cotyledons, J. Biol. Chem. >. 258: 9550.

    PubMed  CAS  Google Scholar 

  • Johnson, L. M., Bankaitis, V. A., and Emr, S. D., 1987, Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell>, 48:875.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, R B., 1985, Pathways of protein secretion in eukaiyotes. Science>, 230:25.

    Article  PubMed  CAS  Google Scholar 

  • Khoo, V., and Wolf, J. J., 1970, Origin and development of protein granules in maize endosperm, Am. J. Bot. >, 57:1042.

    Article  Google Scholar 

  • Larkins, B. A., and Hurkman, W. J., 1978, Synthesis and deposition of zein in protein bodies of maize endosperm, Plant Physiol. >, 62:256.

    Article  PubMed  CAS  Google Scholar 

  • Lauriere, M. Lauriere, C., Johnson, K. D., Chrispeels, M. J., and Sturm, A., 1989, Characterization of a xylose-specific antiserum that reacts with the complex asparagine-linked glycans of extracellular and vacuolar glycoproteins, Plant Physiol. >, 90: 1182.

    Article  PubMed  CAS  Google Scholar 

  • Matile, P., 1975, “The Lytic Compartment of Plant Cells,” Springer Verlag, Heidelberg, FRG, 153 pp.

    Google Scholar 

  • Mauch, F., and Staehelin, L. A., 1989, Functional implications of the subcellular localization of ethylene-induced chitinase and β-1,3 glucanase in bean leaves, Plant Cell>, 1:447.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, N., 1988, Structure, function, and evolution of proton-ATPases, Plant Physiol>., 86:1.

    Article  PubMed  CAS  Google Scholar 

  • Osborn, T. C., Alexander, D. C., Sun, S. S. M., Cardona, C., and Bliss, F. A., 1988, Insecticidal activity and lectin homology of arcelin seed protein, Science>, 240: 207.

    Article  CAS  Google Scholar 

  • Schekman, R, 1985, Protein localization and membrane traffic in yeast, Ann. Rev. Cell Biol., 1:115Schekman, R, 1985, Protein localization and membrane traffic in yeast, Ann. Rev. Cell Biol. >, 1:115.

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald, U., Studer, D., Rocha-Sosa, M., and Wilmitzer, L., 1989, Immunocytochemical localization of patatin, the major glycoprotein in potato (Solarium tuberosom>L.) tubers. Planta>, 179:176.

    Article  Google Scholar 

  • Staswick, P., 1988, Soybean vegetative storage protein structure and gene expression, Plant Physiol>, 87:250.

    Article  PubMed  CAS  Google Scholar 

  • Staswick, P., 1989, Developmental regulation and the influence of plant sinks on vegetative storage protein gene expression in soybean leaves, Plant Physiol>., 89:309.

    Article  PubMed  CAS  Google Scholar 

  • Sturm, A., Voelker, T. A., Herman, E. M., and Chrispeels, M. J., 1988, Correct glycosylation, Golgi-processing, and targeting to protein bodies of the vacuolar protein phytohemagglutinin in transgenic tobacco, Planta>, 175:170.

    Article  CAS  Google Scholar 

  • Tague, B. W., and Chrispeels, M. J., 1987, The plant vacuolar protein, phytohemagglutinin, is transported to the vacuole of transgenic yeast, J. Cell Biol. >, 105:1971.

    Article  PubMed  CAS  Google Scholar 

  • Tartakoff, A. M., 1983, Perturbation of vesicular traffic with the carboxylic ionophore monensin, Cell, >. 32:1026.

    Article  PubMed  CAS  Google Scholar 

  • Valls, L. A., Hunter, C. P., Rothman, J. H., and Stevens, T. H., 1987, Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide, Cell>, 48:887.

    Article  PubMed  CAS  Google Scholar 

  • Voelker, T. A., Herman E. M., and Chrispeels, M. J., 1989, In vitro>mutated phytohemagglutinin genes expressed in tobacco seeds: role of glycans in protein targeting and stability, Plant Cell>, 1:95.

    Article  PubMed  CAS  Google Scholar 

  • Walker-Simmons, M., and Ryan, C. A., 1977, Immunological identification of proteinase inhibitors I and II in isolated tomato leaf vacuoles, Plant Physiol>., 60:61.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Chrispeels, M.J., Tague, B.W. (1989). Transport and Targeting of Proteins to Protein Storage Vacuoles (Protein Bodies) in Developing Seeds. In: Taylorson, R.B. (eds) Recent Advances in the Development and Germination of Seeds. NATO ASI Series, vol 187. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0617-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0617-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7894-8

  • Online ISBN: 978-1-4613-0617-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics