One-Carbon Metabolism by the Rumen Acetogen Syntrophococcus Sucromutans

  • Joël Doré
  • Marvin P. Bryant
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 54)


The rumen acetogen Syntrophococcus sucromutans has an absolute requirement for an electron acceptor system to catabolize a variety of carbohydrates as electron donors 1. It can use the O-demethylation of lignin-derived methoxybenzenoids as electron acceptor system, with the corresponding hydroxybenzenoid, acetate and CO2 as products. Formate or a methanogen in coculture can serve as electron acceptor system. Acetate and CO2 are the only products, with methane for the coculture.


Electron Acceptor Methoxyl Group Ferrous Ammonium Sulfate Uptake Hydrogenase Clostridium Pasteurianum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.R. Krumholz and M.P. Bryant. 1986a. Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxybenzenoids or Methanobrevibacter as electron acceptor system. Arch. Microbiol. 143: 313 – 318.CrossRefGoogle Scholar
  2. 2.
    R. Krumholz and M.P. Bryant. 1986b. Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetinCrossRefGoogle Scholar
  3. 3.
    J. Dore and M.P. Bryant. 1989. Lipid growth requirement and the influence of lipid supplement on the fatty acid and aldehyde composition of Syntrophococcus sucromutans. Applied Environ. Microbiol. 55:927-933Google Scholar
  4. 4.
    W.E. O’Brien and L.G. Ljungdahl. 1972. Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum. J. Bacteriol. 109: 626 – 632.PubMedGoogle Scholar
  5. 5.
    H.L. Drake. 1982. Occurence of nickel in carbon monoxide dehydrogenase from Clostridium pasteurianum and Clostridium thermoaceticum. J. Bacteriol. 149: 561 – 566.PubMedGoogle Scholar
  6. 6.
    R.K. Ghambeer, H.G. Wood, M. Schulman, and L. Ljungdahl. 1971. Total synthesis of acetate from C02. III. inhibition by alkyl-halides of the synthesis from C02, methyltetrahydrofolate, and methyl-B12 by Clostridium thermoaceticum. Arch. Biochem. Biophys. 143: 471 – 484.PubMedCrossRefGoogle Scholar
  7. 7.
    R.K. Thauer, E. Rupprecht, and K. Jungermann. 1970. Separation of 14C-formate from C02 fixation metabolites by isoionic-exchange chromatography. Anal. Biochem. 38: 461 – 468.PubMedCrossRefGoogle Scholar
  8. 8.
    S. Abraham and W.Z. Hassid. 1957. The synthesis and degradation of isotopically labeled carbohydrate intermediates. Methods Enzymol. 4: 489 – 560.CrossRefGoogle Scholar
  9. 9.
    G. Fuchs. 1986. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Reviews. 39: 181 – 213.CrossRefGoogle Scholar
  10. 10.
    A.C. Frazer and L.Y. Young. 1986. Anaerobic C1 metabolism of the O-methyl-14C-labeled substituent of vanillate. Appl. Environ. Microbiol 51: 84 – 87.Google Scholar
  11. 11.
    R. Bache and N. Pfennig. 1981. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130: 255 – 261.CrossRefGoogle Scholar

Copyright information

© Plenum Press 1990

Authors and Affiliations

  • Joël Doré
    • 1
  • Marvin P. Bryant
    • 2
  1. 1.CR de Theix Laboratoire de MicrobiologieINRACeyratFrance
  2. 2.Dept. of Animal SciencesUniversity of IllinoisUrbanaUSA

Personalised recommendations