Skip to main content

Abstract

Interspecies electron transfer is irrefutable associated with methanogenic environments. Methanogens can only to use a very limited range of substrates and therefore acetogens are required for the conversion of reduced organic fermentation products (ethanol, lactate, propionate, butyrate etc.) to methanogenic substrates. The activity of methanogens affects the metabolism of both fermentative and acetogenic bacteria. Fermentative organisms which can dispose part of the reducing equivalents as molecular hydrogen, form more oxidized and less reduced organic products in the presence of hydrogen-consuming methanogens. On the other hand the degradation of such reduced organic compounds is obligately linked with methanogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahring, B.K., and Westermann, P., 1987. Thermophilic anaerobic degradation of butyrate by a butyrate-utilizing bacterium in coculture and triculture with methanogenic bacteria, Appl. Environ. Microbiol., 53:429.

    PubMed  CAS  Google Scholar 

  • Ahring, B.K., and Westermann, P., 1987. Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture, Appl. Environ. Microbiol., 53:434.

    PubMed  CAS  Google Scholar 

  • Barker. H.A., 1981, Amino acid degradation by anaerobic bacteria, Ann. Rev. Biochem.,50:23.

    Article  PubMed  CAS  Google Scholar 

  • Beaty, P.S., and McInerney, M.J., 1987, Growth of Syntrophomonas wolfeiin pure culture on crotonate, Arch. Microbiol., 147:389.

    Article  CAS  Google Scholar 

  • Ben-Bassat, A., and Zeikus, J.G., 1981, Thermobacteroides acetoethylicus gen. nov. and spec. nov., a new chemoorganotrophic anaerobic bacterium. Arch. Microbiol., 128:365.

    Article  CAS  Google Scholar 

  • Boone, D.R., and Bryant, M.P., 1980, Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov. from methanogenic ecosystems, Appl. Environ. Microbiol., 40:626.

    PubMed  CAS  Google Scholar 

  • Boone, D.R., Johnson, R.L., and Yitai Liu, 1989, Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake, Appl. Environ. Microbiol., 55:1735.

    PubMed  CAS  Google Scholar 

  • Boone, D.R., and Xun, L., 1987, Effects of pH, temperature and nutrients on propionate degradation by a methanogenic enrichment culture, Appl. Environ. Microbiol., 53:1589.

    PubMed  CAS  Google Scholar 

  • Bornstein, B.T., and Barker, H.A., 1948, The enrgy metabolism of Clostridium kluyveri and the synthesis of fatty acids, J. Biol. Chem., 172:659.

    PubMed  CAS  Google Scholar 

  • Brulla, W.J., and Bryant, M.J., 1989, Growth of syntrophic anaerobic acetogen strain PA-1 with glucose or succinate as energy source, Appl. Environ. Microbiol. 55:1289.

    PubMed  CAS  Google Scholar 

  • Bryant, M.P., Wolin, E.A., Wolin, M.J., and Wolfe, R.S., 1967, Methanobacillus omelianskii, a symbiotic association of two species of bacteria, Arch. Microbiol., 59:20.

    Google Scholar 

  • Chen, M., and Wolin, M.J., 1977, Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium, Appl. Environ. Microbiol. 34:756.

    PubMed  CAS  Google Scholar 

  • Dolfing, J., 1988, Acetogenesis, in:“Biology of anaerobic Microorganisms” Zehnder, A.J.B., ed, John Wiley and Sons, New York.

    Google Scholar 

  • Eichler, B., and Schink, B., 1984, Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov. a homoacetogenic anaerobe. Arch. Microbiol., 147:152.

    Google Scholar 

  • Fontaine, F.E., Peterson, W.H., McCoy, E., Johnson, M.J., and Ritter, G.J., 1942, A new type of glucose fermentation by Clostridium thermoaceticum N. Sp., J. Bacteriol., 43:701.

    CAS  Google Scholar 

  • Gottschalk, G., 1986, “Bacterial metabolism”, Springer Verlag, New York.

    Book  Google Scholar 

  • Grotenhuis, J.T.C., Houwen, F.P., Plugge, C.M.,and Zehnder, A.J.B., 1986, Microbial interactions in granular sludge, Proc. IV Int. Symp. Microb. Ecol., Ljubljana, pp. 163 – 168.

    Google Scholar 

  • Hang Min, and Zinder, S.H., 1989, Kinetics of acetate utilization by two thermophilic acetotrophic methanogens:Methanosarcina sp. strain CALS-1 and Methanothrix sp. strain CALS-1, Appl. Environ. Microbiol., 55:488.

    Google Scholar 

  • Hansen, T.A., and Stams, A.J.M., 1989, A rod-shaped, Gram negative, propionigenic bacterium with a wide substrate range and the ability to fix nitrogen. Arch. Microbiol., Submitted.

    Google Scholar 

  • Hsu, E.J., and Ordal, Z.J., 1970, Coparative metabolism of vegetative and sporulating cultures of Clostrdium thermosaccharolyticum, J. Bacteriol., 102:369.

    PubMed  CAS  Google Scholar 

  • Huser, B.A., Wuhrmann, K, and Zehnder, A.J.B., 1982, Methanothrix soehngenii gen. nov. spec. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium, Arch. Microbiol. 132:1.

    Article  CAS  Google Scholar 

  • Ianotti, E.L., Kafkewitz, D., Wolin, M.J., and Bryant, M.P.,1973, Glucose fermentation products by Ruminococcus albus grown in continuous culture with Vivrio succinogenes:changes caused by interspecies transfer of H2, J. Bacteriol., 114:1231.

    Google Scholar 

  • Jetten, M.S.M., Stams, A.J.M., and Zehnder, A.J.B., 1989, Isolation and characterization of acetyl-CoA synthetase from Methanothrix soehngenii, J. Bacteriol., In press.

    Google Scholar 

  • Kondratieva, E.N., Zacharova, E.V., Duda, V.I., and Krivenko, V.V., 1989, Thermoanaerobium lactoethylicus spec. nov., a new anaerobic bacterium from a hot spring of Kamchatka, Arch. Microbiol. 151:177.

    Google Scholar 

  • Krumholz, L.R., and Bryant, M.P., 1986, Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzoids or Methanobrevibacter as electron acceptor systems, Arch. Microbiol., 143:313.

    CAS  Google Scholar 

  • Laanbroek, H.J., Abee, T. and Voogd, I.L., 1982, Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen, Arch. Microbiol., 133:178.

    CAS  Google Scholar 

  • Leigh, J.A., Mayer, F., Wolfe, R.S., 1981, Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium, Arch. Microbiol., 129:275.

    CAS  Google Scholar 

  • Madden, R.H., 1983, Isolation and characterization of Clostridium ster-corarium sp. nov., a cellulolytic thermophile, Int. J. Syst. Bacteriol., 33:837.

    Article  Google Scholar 

  • Mah, R.A., Smith, M.R., and Baresi, L., 1978, Studies on an acetate-fermenting strain of Methanosarcina, Appl. Environ. Microbiol., 35:1174.

    Google Scholar 

  • McCarty, P.L., 1981, One hundred years of anaerobic treatment, in:“Anaerobic digestion 1981,” Hughes, D.A. et al., ed, Elsevier, Amsterdam.

    Google Scholar 

  • McInerney, M.J., 1988, Anaerobic hydrolysis and fermentation of fats and proteins, in:“Biology of anaerobic Microorganisms” Zehnder, A.J.B., ed, John Wiley and Sons, New York.

    Google Scholar 

  • McInerney, M.J., Bryant, M.P., and Pfennig, N., 1979, Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch. Microbiol., 122:129.

    Article  CAS  Google Scholar 

  • McInerney, M.J., Bryant, M.P., Hespell, R.B., and Costerton, 1981, Syntrophomonas wolfei gen. nov. sp. nov, an anaerobic syntrophic, fatty acid-oxidizing bacterium, Appl. Environ. Microbiol., 41:1029.

    PubMed  CAS  Google Scholar 

  • Nanninga, H.J., and Gottschal, J.C., 1985, Amino acid fermentation and hydrogen transfer in mixed cultures, FEMS Microbiol. Ecol., 31:261.

    Article  CAS  Google Scholar 

  • Ng., T.K., Ben-Bassat, A., Zeikus, J.G., 1981, Ethanol production by thermophilic bacteria:fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydro-sulfuricum, Appl. Environ. Microbiol., 41:1337.

    PubMed  CAS  Google Scholar 

  • Ozturk, S.S., Palsson, B.O., and Thiele, J.H., 1988, Control of Interspecies electron transfer during anaerobic digetion:Dynamic diffusion reaction models for hydrogen gas trasfer in microbial flocs. Biotechnol. Bioeng., 33:745.

    Article  Google Scholar 

  • Patel, B.K.C., Morgan, H.W., and Daniel, R.M., 1985, Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium, Arch. Microbiol., 141:63.

    Article  CAS  Google Scholar 

  • Roy, F., Samain, E., Dubourguier, H.C., Albagnac, G., 1986, Syntrophomonas sapovorans sp. nov. a new obligate proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids, Arch. Microbiol., 145:142.

    Article  CAS  Google Scholar 

  • Plugge, C.M., Grotenhuis, J.T.C., and Stams, A.J.M., 1989, Isolation and characterization of an ethanol-degrading anaerobe from methanogenic granular sludge. This book.

    Google Scholar 

  • Scheifinger, C.C., Linehan, B., and Wolin, M.J., 1975, H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria, Appl. Microbiol., 29:480.

    PubMed  CAS  Google Scholar 

  • Scherer, P., and Sahm, H., 1981, Influence of sulfur-containing compounds on growth of Methanosarcina barkeri in a defined medium. Eur. J. Appl. Microbiol., 12:29.

    Article  Google Scholar 

  • Schink, B., 1986, New Aspects of fatty acid metabolism in anaerobic digestion, Proc. IV Int. Symp. Microbiol. Ecol. Ljubljana. pp. 180 – 184.

    Google Scholar 

  • Schink, B., 1984, Fermentation of 2,3-butanediol by Pelobacter carbinolycus sp. nov. and Pelobacter propionicus and evidence for propionate formation from C2-compounds, Arch. Microbiol., 137:33.

    Google Scholar 

  • Schink, B., and Pfennig, N., 1982, Propionigenium modestum gen. nov. sp. nov., a new strictly anaerobic, nonsporing bacterium growing on succinate, Arch. Microbiol., 133:209.

    Article  CAS  Google Scholar 

  • Scholten-Koerselman, I, Houwaard, F., Janssen, P., and Zehnder, A.J.B., 1986, Bacteroides xylanolyticus sp. nov., a xylanolytic bacterium from methane producing cattle manure, Ant. van Leeuwenhoek, 52:543.

    Article  CAS  Google Scholar 

  • Schweiger, G., and Buckel, W., 1984, On the degradtion of (R)-lactate in the fermentation of alanine to propionate by Clostridium propionicum, FEBS Lett., 171:79.

    Article  PubMed  CAS  Google Scholar 

  • Skrabanja, A.T.P., and Stams, A.J.M., 1989, Oxidative propionate formation by anaerobic bacteria, This book.

    Google Scholar 

  • Smith, D.P., and McCarty, P.L., 1989, Energetic and rate effects on methanogenesis of ethanol and propionate in perturbed CSTRs, Biotech. Bioeng., 34:39.

    Article  CAS  Google Scholar 

  • Stams, A.J.M., and Hansen, T.A., 1984, Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov. spec. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-rediucing and methanogenic bacteria, Arch. Microbiol., 137:329.

    Article  CAS  Google Scholar 

  • Stams, A.J.B., Grotenhuis, J.T.C., and Zehnder, A.J.B., 1989, Structure-function relationship in granular sludge. Proc. V Int. Symp. Microbiol. Ecol., Kyoto, in press.

    Google Scholar 

  • Stieb, M., and Schink, B., 1985, Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium, Arch. Microbiol., 140:387.

    Article  CAS  Google Scholar 

  • Thauer, R.K., Jungermann, k., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev., 41:100.

    PubMed  CAS  Google Scholar 

  • Thiele, J.H., and Zeikus, J.G., 1987, Interactions between hydrogen- and formate-producing bacteria and methanogens during anaerobic digestion, in:“Handbook on anaerobic fermentations”, Erickson, L.E. and Fung, D., ed, Marcel Dekker, New York, pp. 537 – 595.

    Google Scholar 

  • Thiele, J.H., and Zeikus, J.G., 1988, Control of interspecies electron flow during anaerobic digestion:significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs, Appl. Environ. Microbiol., 54:20.

    PubMed  CAS  Google Scholar 

  • Tholozan, J.L., Samain, E., Grivet, J.P., Moletta, R., Dubourguier, H.C., and Albagnac, G., 1988, Reductive decarboxylation of propionate into butyrate in methanogenic ecosystems. Appl. Environ. Microbiol., 54:441

    PubMed  CAS  Google Scholar 

  • Weimer, P.J., and Zeikus, J.G., 1977, Fermentation of cellulose and cellobiose by Clostrdium thermocellum in the presence and absence of Methanobacterium thermoautotrophicum, Appl. Environ. Microbiol. 33:289.

    PubMed  CAS  Google Scholar 

  • Westermann, P., Ahring, B.K., and Mah, R.A., 1989, Treshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria, Appl. Environ. Microbiol., 55:524.

    Google Scholar 

  • Widdel, F., Rouviere, P.E. and Wolfe, R.S., 1988, Classification of secondary alhohol-utilizing methanogens including a new thermophilic isolate, Arch. Microbiol., 150:477.

    Article  CAS  Google Scholar 

  • Wiegel, J., and Ljungdahl, L.G., 1981, Thermoanaerobacter ethanolicus gen. nov. sp. nov., a new extreme thermophilic anaerobic bacterium, Arch. Microbiol., 128:343.

    Article  CAS  Google Scholar 

  • Wiegel, J., Ljungdahl, L.G., and Rawson, J.R., 1979, Isolation from soil and properties of the extreme thermophile Clostridium ther-mohydrosulfuricum, J. Bacteriol., 139:800.

    PubMed  CAS  Google Scholar 

  • Winter, J., and Wolfe, R.S., 1980, Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens, Arch. Microbiol., 124:73.

    Article  PubMed  CAS  Google Scholar 

  • Zehnder, A.J.B., and Wuhrmann, K., 1977, Physiology of Methanobacterium strain AZ, Arch. Microbiol., 111:119.

    Article  Google Scholar 

  • Zeikus, J.G., 1983, Metabolism of one carbon compounds by chemoor- ganotrophic anaerobes. Adv. Microbiol. Physiol., 24:215.

    Article  CAS  Google Scholar 

  • Zeikus, J.G., Hegge, P.W., and Anderson, M.A., 1979, Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium, Arch. Microbiol., 122:41.

    Article  CAS  Google Scholar 

  • Zinder, S.H., 1984, Microbiology of anaerobic conversion of organic wastes to methane:recent developments, ASM News, 50:294.

    Google Scholar 

  • Zinder, S.H., and Koch, M., 1984, Non-acetoclastic methanogenesis from acetate:acetate oxidation by a thermophilic syntrophic coculture, Arch. Microbiol., 138:263.

    Article  CAS  Google Scholar 

  • Zinder, S.H., Cardwell, S.C., Anguish, T., Lee, M., and Koch, M., 1984, Methanogenesis in a thermophilic (58°C) anaerobic digestor:Methano-thrix sp. as an important aceticlastic methanogen, Appl. Environ. Microbiol. 47:796.

    PubMed  CAS  Google Scholar 

  • Zinder, S.H., and Mah, R.A., 1979, Isolation and chracterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis, Appl. Environ. Microbiol., 38:996.

    PubMed  CAS  Google Scholar 

  • Zoetemeyer, R.J., Arnoldy, P., Cohen, A., and Boelhouwer, C., 1982, Influence of temperature on the anerobic acidification of glucose in a mixed culture forming part of a two-stage digestion process, Water Res., 16:312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Stams, A.J.M., Zehnder, A.J.B. (1990). Ecological Impact of Syntrophic Alcohol and Fatty Acid Oxidation. In: Bélaich, JP., Bruschi, M., Garcia, JL. (eds) Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer. Federation of European Microbiological Societies Symposium Series, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0613-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0613-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7892-4

  • Online ISBN: 978-1-4613-0613-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics