Effects of Elevated Hydrogen Partial Pressures on Anaerobic Treatment of Carbohydrate

  • Stephen R. Harper
  • Frederick G. Pohland
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 54)


The theory of interspecies hydrogen transfer (Wolin and Miller, 1982) is now nearly two decades old, and is considered the biochemical cornerstone of methanogenesis in all natural and man-made habitats (soils, sediments, intestines; anaerobic digesters and treatment systems). Therefore, it is surprising that only a handful of engineering studies (Table 1) have focused on the production and effects of hydrogen during continuous treatment of various waste substrates. A review of this information reveals: 1) a lack of consensus on the inhibitory effects of hydrogen, and 2) an insufficiency of information to allow generalization of interspecies hydrogen effects under all possible treatment scenarios (i.e., all combinations of reactor configuration and wastewater type).


Anaerobic Digester Propionic Acid Cattle Manure Treatment Scenario Anaerobic Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahring, B.K. and Westermann, P. Appl Env. Microbiol. 53,2, 434, (1987).Google Scholar
  2. Archer, D.B. et al., Biotechnology Letters, 8, 3, 197, (1986).CrossRefGoogle Scholar
  3. Barnes, et al., Proc 37th Purdue Industrial Waste Conf., 715, (1983).Google Scholar
  4. Boone, D.R. Appl Env. Microbiol, 43, 1, 57, (1983).Google Scholar
  5. de Santis, J. and Friedman, A.A. Proc. 14thIAWPRC Conf. (Brighton), (1988).Google Scholar
  6. Collins, L.J., and Paskins, A.R. Water Research, 21, 12, 1567, (1987).CrossRefGoogle Scholar
  7. Denac, M. et al., Biotechnol. Bioeng., 31, 1, (1988).PubMedCrossRefGoogle Scholar
  8. Harper, S.R. and Pohland, F. g. Anaerobic Digestion 1988, 79, (1988).Google Scholar
  9. Harper, S.R. Ph.D. Dissertation, Georgia Institute of Technology (1989).Google Scholar
  10. Kaspar, H.F. and Wuhrmann, K. Appl Env. Microbiol., 36, 1, 1, (1978).Google Scholar
  11. Heyes, R.H. and Hall, R.J. Appl Env. Microbiol.46, 3, 710, (1983).Google Scholar
  12. Mosey, F.E. and Fernandes, X. A. 14th IAWPRC Conf. (Brighton) (1988).Google Scholar
  13. Poels, J. et al., Biotechnology and Bioengineering, 27, 1692, (1985).PubMedCrossRefGoogle Scholar
  14. Schonheit, et al., Arch. Microbiol., 131, 285, (1982).Google Scholar
  15. Shea, T.G. et al., Water Research, 2, 833, (1968).CrossRefGoogle Scholar
  16. Smith, P.H. USEPA 600/2-80-093 (1980).Google Scholar
  17. Smith, D.P. and McCarty, P.L. Anaerobic Digestion 1988, Poster, 75, (1988).Google Scholar
  18. Sykes, R.M. Ph.D. Dissertation, Purdue University, June (1970).Google Scholar
  19. Whitmore,T.N. and Lloyd, D. Biotechnology Letters, 8, 3, 203, (1986).CrossRefGoogle Scholar
  20. Wilkie, al., ln:Methane from Biomass: A Systems Approach, Elsevier (1988).Google Scholar
  21. Wolin, M.J. and Miller, T.L ASM News, 48, 12, 561 (1982).Google Scholar

Copyright information

© Plenum Press 1990

Authors and Affiliations

  • Stephen R. Harper
    • 1
  • Frederick G. Pohland
    • 2
  1. 1.Georgia Tech Research InstituteAtlantaUSA
  2. 2.University of PittsburghPittsburghUSA

Personalised recommendations