Skip to main content

Abstract

Two pathways for H2 metabolism have been identified in Escherichia coli and other members of the family Enterobacteriaceae under anaerobic growth conditions. The first pathway, known as the formate hydrogenlyase system, occurs during fermentative growth on carbohydrates in the absence of an external electron acceptor (Peck et Gest, 1957). It consists at least of two enzymes, a benzyl viologen-linked formate dehydrogenase (FDH-BV) and a hydrogenase, which catalyze the oxidation of formate produced by glycolysis to carbon dioxide and molecular H2 (Gray and Gest, 1965). The overall reaction is scalar and functions to remove reducing equivalents exchangeable with formate and to help offset acidification of the growth medium. In the second pathway the bacteria are able to utilize H2 as an energy source in the presence of a nonfermentable carbon source, such as fumarate, which is acting as (or generating) a terminal electron acceptor (Macy et al., 1976). In this case, a respiratory hydrogenase catalyzes the oxidation (uptake) of H2 in an energy-conserving manner by proton translocation across the cytoplasmic membrane (Jones, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballantine, S.P., and Boxer, D. H., 1986, Isolation and characterization of a soluble active fragment of hydrogenase isoenzyme 2 from membranes of anaerobically grown Escherichia coli, Eur. J. Biochem. 156:277

    Article  PubMed  CAS  Google Scholar 

  • Berlier, Y. M., Dimon, B., Fauque, G., and Lespinat, P. A., 1985, Direct mass-spectrometric monitoring of the metabolism and isotope exchange in enzymatic and microbiological investigation, in: “Gas Enzymology”, H. Degn, R. P. Cox, and H. Toftlund, eds., Reidel Publishing Company, p. 17.

    Google Scholar 

  • Birkmann, A., Zinoni, F., Sawers, G., and Böck, A., 1987, Factors affecting transcriptional regulation of the formate-hydrogen-lyase pathway of Escherichia coli, Arch. Microbiol., 148:44.

    Article  PubMed  CAS  Google Scholar 

  • Casadaban, M. J., and Cohen, S. N., 1979, Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage : in vivo probe for transcriptional control sequences, Proc. Natl. Aad. Sci. USA, 76:4530

    Article  CAS  Google Scholar 

  • Chaudhuri, A., and Krasna, A. I., 1987, Isolation of genes required for hydrogenase synthesis in Escherichia coli, J. Gen. Microbiol., 133: 3289

    PubMed  CAS  Google Scholar 

  • Chauduri, A., and Krasna, A. I., 1988, Isolation of a gene required for growth of Escherichia coli on fumarate and H2, J. Gen. Microbiol., 134: 2155

    Google Scholar 

  • Graham, A., Boxer, D. H., Haddock, B. A., Mandrand-Berthelot, M. A., and Jones, R. W., 1980, Immunological analysis of the membrane-bound hydrogenase of Escherichia coli, FEBS Lett., 113: 167.

    Article  PubMed  CAS  Google Scholar 

  • Gray, C. T., and Gest, H., 1965, Biological formation of molecular hydrogen, Science, 148: 186.

    Article  PubMed  CAS  Google Scholar 

  • Jasper, P., and Silver, S., 1977, Magnesium transport in microorganisms, in: “Microorganisms and Minerals”, E. D. Weinberg, ed., Marcel Dekker, New-York, p. 7.

    Google Scholar 

  • Jayaraman, P. S., Peakman, T. C., Busby, S. J. W., Quincey, R.V., and Cole, J.A., 1987, Location and sequence of the promoter of the gene for the NADH-dependent nitrite reductase of Escherichia coli and its regulation by oxygen, the Fnr protein and nitrite, J. Mol. Biol., 193:781.

    Article  PubMed  CAS  Google Scholar 

  • Johann, S., and Hinton, S. M., 1987, Cloning and nucleotide sequence of the ch1Dlocus, J. Bacteriol., 169:1911.

    PubMed  CAS  Google Scholar 

  • Jones, R.W., 1980, The role of the membrane-bound hydrogenase in the energy-conserving oxidant of molecular hydrogen by Escherichia coli, Biochem. J., 188:354.

    Google Scholar 

  • Karube, I., Tomiyama, M., and Kikuchi, A., 1984, Molecular cloning and physical mapping of the hydgene of Escherichia coli K-12, FEMS Microbiol. Lett., 25:165.

    Article  CAS  Google Scholar 

  • Lee, J. H., Patel, P., Sankar, P., and Shanmugam, K. T., 1985, Isolation and characterization of mutant strains of Escherichia coli altered in H2 metabolism, J. Bacteriol., 162:344.

    PubMed  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, J., Farr, A. L., and Randall, R. J., 1951, Protein measurement with Folin phenol reagent, J. Biol. Chem., 193:265.

    PubMed  CAS  Google Scholar 

  • Macy, J., Kulla, H., and Gottschalk, G., 1971, H2-dependent anaerobic growth of Escherichia coli on L-malate : succinate formation, J. Bacteriol., 125:423.

    Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Miller, J. H., 1972, Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Miller, J. H., 1972, Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • O’Hoy, K., and Krishnapillai, V., 1985, Transposon mutagenesis of the Pseudomonas aeruginosa PAO chromosome and the isolation of high frequency of recombination donors, FEMS Microbiol. Lett., 29:299.

    Article  Google Scholar 

  • Pecher, A., Zinoni, F., Jatisatienr, C., Wirth, R., Hennecke, H., and Böck, A., 1983, On the redox control of synthesis of anaerobically induced enzymes in enterobacteriaceae, Arch. Microbiol., 136:131.

    Article  CAS  Google Scholar 

  • Ruiz-Herrera, J., and DeMoss, J. A., 1969, Nitrate reductase complex of Escherichia coli K-12 : participation of specific formate dehydrogenase and cytochrome b 1 components in nitrate reduction, J. Bacteriol., 99:720.

    PubMed  CAS  Google Scholar 

  • Ruiz-Herrera, J., and Alvarez, A., 1972, A physiological study of formate dehydrogenase, formate oxidase and hydrogenlyase from Escherichia coli K-12, Antonie van Leeuwenhoek J. Microbiol Serol., 38:497.

    Article  CAS  Google Scholar 

  • Sankar, P., Lee, J. H., and Shanmugam, K. T., 1985, Cloning of hydrogenase genes and fine structure analysis of an operon essential for H2 metabolism in Escherichia coli, J. Bacteriol., 162:353

    PubMed  CAS  Google Scholar 

  • Sawers, R. G., and Boxer, D. H., 1986, Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K-12, Eur. J. Biochem., 156:265.

    Article  PubMed  CAS  Google Scholar 

  • Sawers, R. G., Ballantine, S. P., and Boxers, D.H., 1985, Differential expression of hydrogenase isoenzymes in Escherichia coli K-12 : evidence for a third isoenzyme, J. Bacteriol., 164:1324.

    PubMed  CAS  Google Scholar 

  • Sawers, R. G., Jamieson, D. J., Higgins, C. F., and Boxers, D. H., 1986, Charecterization and physiological roles of membrane-bound hydrogenase isoenzymes from Salmonella typhimurium, J. Bacteriol., 168:398.

    PubMed  CAS  Google Scholar 

  • Shaw, D. J., Rice, D. W., and Guest, J. R., 1983, Homology between CAP and Fnr, a regulator of anaerobic respiration in Escherichia coli, J. Mol. Biol., 166:241.

    Article  PubMed  CAS  Google Scholar 

  • Spratt, B. G., Hedge, P. G., te Heesen, S., Edelman, A., and Broome-Smith, J.K., 1986, Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9, Gene, 41: 337.

    Article  PubMed  CAS  Google Scholar 

  • Stoker, K., Oltmann, L. F., and Stouthamer, A. H., 1989, Randomly included Escherichia coli K-12 Tn5 insertion mutants defective in hydrogenase activity, J. Bacteriol., 171:831.

    PubMed  CAS  Google Scholar 

  • Stults, L. W., Sray, W. A., and Maier, R. J., 1986, Regulation of hydrogenase biosynthesis by nickel in Bradyrhizobium japonicum, Arch. Microbiol., 146:280.

    Article  CAS  Google Scholar 

  • Tabor, S., and Richardson, C. C., 1985, A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes, Proc. Natl. Acad. Sci. USA, 82:1074.

    Article  PubMed  CAS  Google Scholar 

  • Touati, D., 1983, Cloning and mapping of the manganese superoxide dismutase gene (soda) of Escherichia coli K-12, J. Bacteriol., 155:1078.

    PubMed  CAS  Google Scholar 

  • Waugh, R., and Boxer, D. H., 1986, Pleiotropic hydrogenase mutants of Escherichia coliK-12: growth in the presence of nickel can restore hydrogenase activity, Biochimie, 68: 157.

    Article  PubMed  CAS  Google Scholar 

  • Wu, L. F., 1988, Caractérisation génétique et physiologique du Système formiate-hydrogènelyase chez Escherichia coli: clonage et régulation de l’expression des gènes fdhF et hydC, Ph. D. Thesis, Institut National des Sciences Appliquées de Lyon.

    Google Scholar 

  • Wu, L. F., and Mandrand-Berthelot, M. A., 1986, Genetic and physiological characterization of new Escherichia colimutants impaired in hydrogenase activity, Biochimie, 68: 167.

    Article  PubMed  CAS  Google Scholar 

  • Wu, L. F., Mandrand-Berthelot, M. A., Waugh, R., Edmonds, C.J., Holt, S. E., and Boxer, D. H., 1989, Nickel deficiency gives rise to the defective hydrogenase phenotype of hydC and fnr mutants in Escherichia coli, Mol. Microbiol., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum

About this chapter

Cite this chapter

Mandrand, MA., Wu, LF., Boxer, D. (1990). Hydrogenase Mutants of Escherichia coli Defective in Nickel Uptake. In: Bélaich, JP., Bruschi, M., Garcia, JL. (eds) Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer. Federation of European Microbiological Societies Symposium Series, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0613-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0613-9_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7892-4

  • Online ISBN: 978-1-4613-0613-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics