Interaction Studies Between Redox Proteins, Cytochrome C3, Ferredoxin and Hydrogenase from Sulfate Reducing Bacteria

  • A. Dolla
  • F. Guerlesquin
  • M. Bruschi
  • R. Haser
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 54)


Sulfate reducing bacteria, which are all obligate anaerobes, have in common their ability to utilize the oxidized forms of sulfur as electron acceptor for the oxidation of organic substrates. This reduction of inorganic compounds known as dissimulatory reduction of sulfates is linked to energy conservation. Lactate is the most common energy source for the genus Desulfovibrio and the reduction of two lactate produces eight electron pairs and two ATP by substrate-level phosphorylation exactly balancing the amounts needed for the reduction of one sulfate.


Methyl Line Intramolecular Electron Transfer Redox Partner Proton Release Desulfovibrio Desulfuricans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    . J.M. Odom and H.D. Peck Jr. Hydrogenase, electron transfer proteins and energy coupling in the sulfate reducing bacteria Desulfovibrio, Ann. Rev. Microbiol. 38: 551 – 592. (1984).CrossRefGoogle Scholar
  2. 2.
    H.M. Van der Westen, S.G. Mayhew and C. Veeger. Separation of hydrogenase from intact cells of Desulfovibrio vulgaris. Purification and Properties, FEBS Lett. 86: 122 – 126. (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Cammack, D. Patil, R. Aguire and E.C. Hatchikian. Redox properties of the ESR - detectable nickel in hydrogenase from Desulfovibrio gigas, FEBS Lett. 142: 289–292. (1982).Google Scholar
  4. 4.
    M. Teixeira, G. Fauque, I. Moura, P.A. Lespinat, Y. Berlier, B. Pickril, H.D. Peck Jr., A.V. Xavier, J. Le Gall and J.J.G. Moura. Nickel - (iron sulfur) - Selenium containing hydrogenases from Desulfovibrio baculatus(DSM) 1743, Eur. J. Biochem. 167: 47 – 58. (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Bruschi, M. Loutfi, P. Bianco and J. Haladjian. Correlation studies between structural and redox properties of cytochromes C3, Biochem. Biophys. Res. Comm. 120: 384 – 389. (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    G.R. Bell, J.P. Lee, H.D. Peck Jr and J. Le Gall. Reactivity of D. gigashydrogenase toward artificial and natural electron donor or acceptors, Biochimie 60: 315 – 320. (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Bruschi. The primary structure of the tetrahaem cytochrome c, from Desulfovibrio desulfuricans(strain Norway 4). Description of a new class of low potential cytochrome c, Biochim. Biophys. Acta. 671: 219 – 226. (1981).Google Scholar
  8. 8.
    R. Haser, M. Pierrot, M. Frey, F. Payan, J.P. Astier, M. Bruschi and J. Le Gall. Structure and sequence of cytochrome c3, a multihaem cytochrome, 282: 806 – 810. (1979).Google Scholar
  9. 9.
    Y. Higuchi, M. Kusunoki, Y. Matsuura, N. Yasuoka, M. Kakudo. Refined structure of cytochrome c3 from D. vulgaris Miyazaki at 1.8 A resolution, J. Mol. Biol. 172: 109–139 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Bruschi and F. Guerlesquin. Structure, function and evolution of bacterial ferredoxins, FEMS Microbiology Reviews. 54 : 155–176. (1988).CrossRefGoogle Scholar
  11. 11.
    J.M. Akagi. Electron carriers for the phosphoroclastic reaction of Desulfovibrio desulfuricans, J. Biol. Chem. 242: 2478 – 2483. (1967).PubMedGoogle Scholar
  12. 12.
    B. Suh and J.M. Akagi. Formation of thiosulfate from sulfite by Desulfovibrio vulgaris, J. Bacteriol. 99: 210 – 215. (1969).PubMedGoogle Scholar
  13. 13.
    J. Le Gall and J.R. Postgate. The physiology of sulfate reducing bacteria, Adv. Microbiol. Physiol. 10: 81 – 133. (1973).CrossRefGoogle Scholar
  14. 14.
    P. Bianco and J. Haladjian. Current-potential responses for a tetrahemic protein: a method of determining the individual half-wave potentials of cytochrome c3 from Desulfovibrio desulfuricansstrain Norway, Electrochim. Acta. 26: 1001 – 1004. (1981).CrossRefGoogle Scholar
  15. 15.
    F. Guerlesquin, J.J.G. Moura and R. Cammack. Iron-sulphur cluster compostion and redox properties of two ferredoxins from Desulfovibrio desulfuricansNorway, Biochim. Biophys. Acta. 679: 422 – 427. (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    C. Capillère-Blandin, F. Guerlesquin and M. Bruschi. Rapid kinetic studies of the electron exchange reaction between cytochrome c3 and ferredoxin from D. desulfuricansNorway strain and their individual reactions with dithionite, Biochim. Biophys. Acta. 848: 279 – 293. (1986).CrossRefGoogle Scholar
  17. 17.
    F. Guerlesquin, M. Noailly and M. Bruschi. Preliminary 1H NMR studies of the interaction between cytochrome c3 and ferredoxin I from Desulfovibrio desulfuricansNorway, Biochem. Biophys. Res. Comm. 130: 1102 – 1108. (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    F. Guerlesquin, J.C. Sari and M. Bruschi. Thermodynamic parameters of the cytochrome c3 - ferredoxin complex formation. Biochemistry, 26: 7438 – 7443. (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    P.D. Ross and S. Subramanian. Thermodynamics of protein association reactions: Forces contributing to stability, Biochemistry. 20: 3096–31O2. (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    M.F. Perutz, H. Murihead, L. Mazzarella, R.A. Grawtha, J. Greer and J.V. Kilmartin. Identification of residues responsible for the alkaline Bohr effect in haemoglobin, Nature (London). 222: 124O–1243. (1969).Google Scholar
  21. 21.
    S. Mathews. The structure, function and evolution of cytochromes, Prog. Biophys. Mol. Biol. 45: 1 – 56. (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    C. Cambillau, M. Frey, J. Mosse, F. Guerlesquin and M. Bruschi. Model of a complex between the tetraheme cytochrome c3 and the ferredoxin I from Desulfovibrio desulfuricansNorway, Proteins. 4: 63 – 70. (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Dolla and M. Bruschi. The cytochrome c3 -ferredoxin electron transfer complex: cross linking studies, Biochim. Biophys. Acta. 932: 26 – 32. (1988).CrossRefGoogle Scholar
  24. 24.
    A. Dolla, F. Guerlesquin, M. Bruschi, B. Guigliarelli, M. Asso, P. Bertrand and J.P. Gayda. Cytochrome C3-ferredoxin I covalent complex: evidence for an intramolecular electron exchange in cytochrome c3, Biochim. Biophys. Acta. 975: 395 – 398 (1989).CrossRefGoogle Scholar
  25. 25.
    A. Dolla, F. Guerlesquin, M. Noailly and M. Bruschi. Chemical modification of arginine 73 of cytochrome c3 from Desulfovibrio desulfuricansNorway, Biochem. (Life Sci. Adv.) 6: 253 – 258. (1987).Google Scholar
  26. 26.
    A. Dolla, C. Cambillau, P. Bianco, J. Haladjian and M. Bruschi. Structural assignment of the heme potentials of cytochrome c3, using a specifically modified argine, Biochem. Biophys. Res. Comm. 147: 818 – 823. (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    G. Voordouw and S. Brenner. Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough), Eur. J. Biochem. 148: 515–520. (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    . G. Voordouw, N.K. Menon, J. Le Gall, E. Choi, H.D. Peck and A. Przybyla. Analysis and comparison of nucleotide sequences encoding the genes for (Ni Fe) and (Ni Fe Se) hydrogenases from Desulfovibrio gigasand Desulfovibrio baculatus. Journal of Bacteriology. 171: 2894 – 2899. (1989).PubMedGoogle Scholar
  29. 29.
    J. Haladjian, P. Bianco, F. Guerlesquin and M. Bruschi. Electrochemical study of electron exchange between cytochrome c3 and hydrogenase from Desulfovibrio desulfuricans Norway, Biochim. Biophys. Res. Comm. 147: 1289–1294. (1987).CrossRefGoogle Scholar
  30. 30.
    K. Kimura, A. Suzuki, H. Inokushi and T. Yagi. Hydrogenase activity in the dry state. Isotope exchange and reversible oxidoreduction of cytochrome c3, Biochim. Biophys. Acta. 567: 96 – 105. (1979).PubMedGoogle Scholar
  31. 31.
    J. Le Gall and H.D. Peck. Amino-terminal amino acid sequences of electron transfer proteins from Gram-negative bacteria as indicators of their cellular localization: the sulfate-reducing bacteria, FEMS Microbiology Reviews 46: 35 – 40. (1987).CrossRefGoogle Scholar
  32. 32.
    G. Voordouw, H.M. Kent and J.R- Postgate. Identification of the genes for hydrogenase and cytochrome c3 in Desulfovibrio, Can. J. Microbiol. 33: 1OO6–1O1O. (1987).CrossRefGoogle Scholar
  33. 33.
    . F. Guerlesquin, G. Bovier-Lapierre and M. Bruschi. Purification and characterization of cytochrome c3 (Mr 26000) isolated from Desulfovibrio desulfuricansNorway, Biochem. Biophys. Res. Comm. 105: 530 – 538. (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    R. Rieder, R. Cammack and D.O. Hall. Purification and properties of the soluble hydrogenase from Desulfovibrio desulfuricansNorway, Eur. J. Biochim. 145: 637 – 643. (1984).CrossRefGoogle Scholar
  35. 35.
    W.V. Lalla-Maharajh, D.O. Hall, R. Cammack and K.K. Rao. Purification and properties of the membrane bound hydrogenase from Desulfovibrio desulfuricans, Biochem. J. 209: 445 – 454. (1983).PubMedGoogle Scholar
  36. 36.
    P.G. Curley and G. Voordouw. Cloning and sequencing of the gene encoding flavodoxin from Desulfovibrio vulgarisHildenborough, FEMS Microbiol Lett. 49: 295 – 299. (1988).CrossRefGoogle Scholar
  37. 37.
    M. Pierrot, R. Haser, M. Frey, F. Payan and J.P. Astier. Crystal structure and electron transfer properties of cytochrome c3. J. Biol. Chem. 257: 14341 – 14348 (1982).PubMedGoogle Scholar
  38. 38.
    R. Haser and J. Mosse. Heme cluster structures and electron transfer in multiheme cytochromes c3. In: cytochrome systems,eds. S. Papa, B. Chance and L. >Ernster, Plenum Publishing Corporation, pp. 423–430 (1987).Google Scholar

Copyright information

© Plenum Press 1990

Authors and Affiliations

  • A. Dolla
    • 1
  • F. Guerlesquin
    • 1
  • M. Bruschi
    • 1
  • R. Haser
    • 2
  1. 1.L.C.BC.N.R.S.Marseille Cedex 9France
  2. 2.Faculté de MédecineLCCMB CNRSMarseille Cdex15France

Personalised recommendations