Skip to main content

Interaction Studies Between Redox Proteins, Cytochrome C3, Ferredoxin and Hydrogenase from Sulfate Reducing Bacteria

  • Chapter
  • 234 Accesses

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 54))

Abstract

Sulfate reducing bacteria, which are all obligate anaerobes, have in common their ability to utilize the oxidized forms of sulfur as electron acceptor for the oxidation of organic substrates. This reduction of inorganic compounds known as dissimulatory reduction of sulfates is linked to energy conservation. Lactate is the most common energy source for the genus Desulfovibrio and the reduction of two lactate produces eight electron pairs and two ATP by substrate-level phosphorylation exactly balancing the amounts needed for the reduction of one sulfate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. . J.M. Odom and H.D. Peck Jr. Hydrogenase, electron transfer proteins and energy coupling in the sulfate reducing bacteria Desulfovibrio, Ann. Rev. Microbiol. 38: 551 – 592. (1984).

    Article  CAS  Google Scholar 

  2. H.M. Van der Westen, S.G. Mayhew and C. Veeger. Separation of hydrogenase from intact cells of Desulfovibrio vulgaris. Purification and Properties, FEBS Lett. 86: 122 – 126. (1978).

    Article  PubMed  Google Scholar 

  3. R. Cammack, D. Patil, R. Aguire and E.C. Hatchikian. Redox properties of the ESR - detectable nickel in hydrogenase from Desulfovibrio gigas, FEBS Lett. 142: 289–292. (1982).

    Google Scholar 

  4. M. Teixeira, G. Fauque, I. Moura, P.A. Lespinat, Y. Berlier, B. Pickril, H.D. Peck Jr., A.V. Xavier, J. Le Gall and J.J.G. Moura. Nickel - (iron sulfur) - Selenium containing hydrogenases from Desulfovibrio baculatus(DSM) 1743, Eur. J. Biochem. 167: 47 – 58. (1987).

    Article  PubMed  CAS  Google Scholar 

  5. M. Bruschi, M. Loutfi, P. Bianco and J. Haladjian. Correlation studies between structural and redox properties of cytochromes C3, Biochem. Biophys. Res. Comm. 120: 384 – 389. (1984).

    Article  PubMed  CAS  Google Scholar 

  6. G.R. Bell, J.P. Lee, H.D. Peck Jr and J. Le Gall. Reactivity of D. gigashydrogenase toward artificial and natural electron donor or acceptors, Biochimie 60: 315 – 320. (1978).

    Article  PubMed  CAS  Google Scholar 

  7. M. Bruschi. The primary structure of the tetrahaem cytochrome c, from Desulfovibrio desulfuricans(strain Norway 4). Description of a new class of low potential cytochrome c, Biochim. Biophys. Acta. 671: 219 – 226. (1981).

    CAS  Google Scholar 

  8. R. Haser, M. Pierrot, M. Frey, F. Payan, J.P. Astier, M. Bruschi and J. Le Gall. Structure and sequence of cytochrome c3, a multihaem cytochrome, 282: 806 – 810. (1979).

    CAS  Google Scholar 

  9. Y. Higuchi, M. Kusunoki, Y. Matsuura, N. Yasuoka, M. Kakudo. Refined structure of cytochrome c3 from D. vulgaris Miyazaki at 1.8 A resolution, J. Mol. Biol. 172: 109–139 (1984).

    Article  PubMed  CAS  Google Scholar 

  10. M. Bruschi and F. Guerlesquin. Structure, function and evolution of bacterial ferredoxins, FEMS Microbiology Reviews. 54 : 155–176. (1988).

    Article  CAS  Google Scholar 

  11. J.M. Akagi. Electron carriers for the phosphoroclastic reaction of Desulfovibrio desulfuricans, J. Biol. Chem. 242: 2478 – 2483. (1967).

    PubMed  CAS  Google Scholar 

  12. B. Suh and J.M. Akagi. Formation of thiosulfate from sulfite by Desulfovibrio vulgaris, J. Bacteriol. 99: 210 – 215. (1969).

    PubMed  CAS  Google Scholar 

  13. J. Le Gall and J.R. Postgate. The physiology of sulfate reducing bacteria, Adv. Microbiol. Physiol. 10: 81 – 133. (1973).

    Article  Google Scholar 

  14. P. Bianco and J. Haladjian. Current-potential responses for a tetrahemic protein: a method of determining the individual half-wave potentials of cytochrome c3 from Desulfovibrio desulfuricansstrain Norway, Electrochim. Acta. 26: 1001 – 1004. (1981).

    Article  CAS  Google Scholar 

  15. F. Guerlesquin, J.J.G. Moura and R. Cammack. Iron-sulphur cluster compostion and redox properties of two ferredoxins from Desulfovibrio desulfuricansNorway, Biochim. Biophys. Acta. 679: 422 – 427. (1982).

    Article  PubMed  CAS  Google Scholar 

  16. C. Capillère-Blandin, F. Guerlesquin and M. Bruschi. Rapid kinetic studies of the electron exchange reaction between cytochrome c3 and ferredoxin from D. desulfuricansNorway strain and their individual reactions with dithionite, Biochim. Biophys. Acta. 848: 279 – 293. (1986).

    Article  Google Scholar 

  17. F. Guerlesquin, M. Noailly and M. Bruschi. Preliminary 1H NMR studies of the interaction between cytochrome c3 and ferredoxin I from Desulfovibrio desulfuricansNorway, Biochem. Biophys. Res. Comm. 130: 1102 – 1108. (1985).

    Article  PubMed  CAS  Google Scholar 

  18. F. Guerlesquin, J.C. Sari and M. Bruschi. Thermodynamic parameters of the cytochrome c3 - ferredoxin complex formation. Biochemistry, 26: 7438 – 7443. (1987).

    Article  PubMed  CAS  Google Scholar 

  19. P.D. Ross and S. Subramanian. Thermodynamics of protein association reactions: Forces contributing to stability, Biochemistry. 20: 3096–31O2. (1981).

    Article  PubMed  CAS  Google Scholar 

  20. M.F. Perutz, H. Murihead, L. Mazzarella, R.A. Grawtha, J. Greer and J.V. Kilmartin. Identification of residues responsible for the alkaline Bohr effect in haemoglobin, Nature (London). 222: 124O–1243. (1969).

    Google Scholar 

  21. S. Mathews. The structure, function and evolution of cytochromes, Prog. Biophys. Mol. Biol. 45: 1 – 56. (1985).

    Article  PubMed  CAS  Google Scholar 

  22. C. Cambillau, M. Frey, J. Mosse, F. Guerlesquin and M. Bruschi. Model of a complex between the tetraheme cytochrome c3 and the ferredoxin I from Desulfovibrio desulfuricansNorway, Proteins. 4: 63 – 70. (1988).

    Article  PubMed  CAS  Google Scholar 

  23. A. Dolla and M. Bruschi. The cytochrome c3 -ferredoxin electron transfer complex: cross linking studies, Biochim. Biophys. Acta. 932: 26 – 32. (1988).

    Article  CAS  Google Scholar 

  24. A. Dolla, F. Guerlesquin, M. Bruschi, B. Guigliarelli, M. Asso, P. Bertrand and J.P. Gayda. Cytochrome C3-ferredoxin I covalent complex: evidence for an intramolecular electron exchange in cytochrome c3, Biochim. Biophys. Acta. 975: 395 – 398 (1989).

    Article  CAS  Google Scholar 

  25. A. Dolla, F. Guerlesquin, M. Noailly and M. Bruschi. Chemical modification of arginine 73 of cytochrome c3 from Desulfovibrio desulfuricansNorway, Biochem. (Life Sci. Adv.) 6: 253 – 258. (1987).

    Google Scholar 

  26. A. Dolla, C. Cambillau, P. Bianco, J. Haladjian and M. Bruschi. Structural assignment of the heme potentials of cytochrome c3, using a specifically modified argine, Biochem. Biophys. Res. Comm. 147: 818 – 823. (1987).

    Article  PubMed  CAS  Google Scholar 

  27. G. Voordouw and S. Brenner. Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough), Eur. J. Biochem. 148: 515–520. (1985).

    Article  PubMed  CAS  Google Scholar 

  28. . G. Voordouw, N.K. Menon, J. Le Gall, E. Choi, H.D. Peck and A. Przybyla. Analysis and comparison of nucleotide sequences encoding the genes for (Ni Fe) and (Ni Fe Se) hydrogenases from Desulfovibrio gigasand Desulfovibrio baculatus. Journal of Bacteriology. 171: 2894 – 2899. (1989).

    PubMed  CAS  Google Scholar 

  29. J. Haladjian, P. Bianco, F. Guerlesquin and M. Bruschi. Electrochemical study of electron exchange between cytochrome c3 and hydrogenase from Desulfovibrio desulfuricans Norway, Biochim. Biophys. Res. Comm. 147: 1289–1294. (1987).

    Article  CAS  Google Scholar 

  30. K. Kimura, A. Suzuki, H. Inokushi and T. Yagi. Hydrogenase activity in the dry state. Isotope exchange and reversible oxidoreduction of cytochrome c3, Biochim. Biophys. Acta. 567: 96 – 105. (1979).

    PubMed  CAS  Google Scholar 

  31. J. Le Gall and H.D. Peck. Amino-terminal amino acid sequences of electron transfer proteins from Gram-negative bacteria as indicators of their cellular localization: the sulfate-reducing bacteria, FEMS Microbiology Reviews 46: 35 – 40. (1987).

    Article  Google Scholar 

  32. G. Voordouw, H.M. Kent and J.R- Postgate. Identification of the genes for hydrogenase and cytochrome c3 in Desulfovibrio, Can. J. Microbiol. 33: 1OO6–1O1O. (1987).

    Article  CAS  Google Scholar 

  33. . F. Guerlesquin, G. Bovier-Lapierre and M. Bruschi. Purification and characterization of cytochrome c3 (Mr 26000) isolated from Desulfovibrio desulfuricansNorway, Biochem. Biophys. Res. Comm. 105: 530 – 538. (1982).

    Article  PubMed  CAS  Google Scholar 

  34. R. Rieder, R. Cammack and D.O. Hall. Purification and properties of the soluble hydrogenase from Desulfovibrio desulfuricansNorway, Eur. J. Biochim. 145: 637 – 643. (1984).

    Article  CAS  Google Scholar 

  35. W.V. Lalla-Maharajh, D.O. Hall, R. Cammack and K.K. Rao. Purification and properties of the membrane bound hydrogenase from Desulfovibrio desulfuricans, Biochem. J. 209: 445 – 454. (1983).

    PubMed  CAS  Google Scholar 

  36. P.G. Curley and G. Voordouw. Cloning and sequencing of the gene encoding flavodoxin from Desulfovibrio vulgarisHildenborough, FEMS Microbiol Lett. 49: 295 – 299. (1988).

    Article  CAS  Google Scholar 

  37. M. Pierrot, R. Haser, M. Frey, F. Payan and J.P. Astier. Crystal structure and electron transfer properties of cytochrome c3. J. Biol. Chem. 257: 14341 – 14348 (1982).

    PubMed  CAS  Google Scholar 

  38. R. Haser and J. Mosse. Heme cluster structures and electron transfer in multiheme cytochromes c3. In: cytochrome systems,eds. S. Papa, B. Chance and L. >Ernster, Plenum Publishing Corporation, pp. 423–430 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press

About this chapter

Cite this chapter

Dolla, A., Guerlesquin, F., Bruschi, M., Haser, R. (1990). Interaction Studies Between Redox Proteins, Cytochrome C3, Ferredoxin and Hydrogenase from Sulfate Reducing Bacteria. In: Bélaich, JP., Bruschi, M., Garcia, JL. (eds) Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer. Federation of European Microbiological Societies Symposium Series, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0613-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0613-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7892-4

  • Online ISBN: 978-1-4613-0613-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics