Skip to main content

Abstract

Production of hydrogen and methane by a mutualistic methanogenic coculture (comprising Desulfovibrio strain FR-17 and Methanobacterium strain FR-2) during batch and continuous growth was monitored by membrane inlet mass spectrometry. This technique allows continuous non-invasive measurement of dissolved gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. P. Bryant, L. L. Campbell, C. A. Reddy and M. R. Crabill, Growth of Desulfovibrioin lactate or ethanol media low in sulphate in association with H2-utilizing methanogenic bacteria, Appl. Environ. Microbiol33: 1162–1169 (1977).

    PubMed  CAS  Google Scholar 

  2. D. B. Archer and G. E. Powell, Dependence of the specific growth rate of methanogenic mutualistic cocultures on the methanogen, Arch. Microbiol. 141: 133–137 (1985).

    Article  CAS  Google Scholar 

  3. M. J. Tatton, D. B. Archer, G. E. Powell and M. L. Parker, Methanogenesis from ethanol by defined mixed continuous cultures, Appl. Environ. Microbiol.55: 440–445 (1989).

    PubMed  CAS  Google Scholar 

  4. M. P. Bryant, Microbial methane production - theoretical aspects, J. Anim. Sci.48: 193–201 (1979).

    CAS  Google Scholar 

  5. S. H. Zinder, Microbiology of anaerobic conversion of organic wastes to methane: recent developments, American Society for Microbiology News50: 294–298 (1984).

    Google Scholar 

  6. M, J. McInerney, M. P. Bryant and D. A. Stafford, Metabolic stages and energetics of microbial anaerobic digestion, in: “Anaerobic Digestion”, pp. 91–98, D. A. Stafford, B. I. Wheatley and D. E. Hughes, eds. (1980).

    Google Scholar 

  7. M. J. Wolin, interactions between H2-producing and methaneproducing species, in: “Microbial Production and Utilization of Gases (H2, CH4, CO)”, pp. 141–150, H. G. Schlegel, G. Gottschalk and N. Pfenning, eds., Golze, Göttingen, F.R.G. (1976).

    Google Scholar 

  8. H. F. Kaspar, and K. Wuhrmann, Product inhibition in sludge digestion, Microb. Ecol.4: 241–248 (1978).

    Article  CAS  Google Scholar 

  9. F. E. Mosey, New developments in the anaerobic treatment of industrial wastes, Water Pollut.. Cont.81: 540–552 (1982).

    CAS  Google Scholar 

  10. T. N. Whitmore, M. Lazzari and D. Lloyd, Comparative studies of methanogenesis in thermophilic and mesophilic anaerobic digesters using membrane inlet mass spectrometry, Biotechnol Lett. 7: 283–288 (1985).

    Article  CAS  Google Scholar 

  11. T. N. Whitmore, D. Lloyd, Mass spectrometric control of the thermophilic anaerobic digestion process based on levels of dissolved hydrogen, Biotechnol Lett. 8: 203–208 (1986).

    Article  CAS  Google Scholar 

  12. T. N. Whitmore, D. Lloyd, G. Jones and T. N. Williams, Hydrogen dependent control of the continuous anaerobic digestion process, Appl. Microbiol.. Biotechnol.26: 383–388 (1987).

    Article  CAS  Google Scholar 

  13. R. F. Hickey, The role of intermediate and product gases as regulators and indicators of anaerobic digestion, Ph.D. Dissertation, University of Massachusetts/Amherst, USA (1987).

    Google Scholar 

  14. F. E. Mosey and X. A. Fernandes, Mathematical modelling of methanogenesis in sewage sludge digestion, in: “Microbiological Methods for Environmental Biotechnology”, pp. 159–168, J. M. Grainger and J. M. Lynch, eds., Academic Press, London, (1984).

    Google Scholar 

  15. D. B. Archer, M. G. Hilton, P. Adams, and H. Wiecko, Hydrogen as a process control index in a pilot scale anaerobic digester, Biotechnol. Lett. 8: 197–202 (1986).

    Article  CAS  Google Scholar 

  16. F. E. Mosey, Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose, Water Sci. Tech.15: 209–232 (1983).

    CAS  Google Scholar 

  17. D. B. Archer, The microbiological basis of process control in methanogenic fermentation of soluble wastes, Enz. Microb. Technol. 5: 162–170 (1983).

    Article  CAS  Google Scholar 

  18. R. E. Hungate, A roll tube method for cultivation of strict anaerobes, in: “Methods in Microbiology”, Vol. 3B, pp. 117–132, R. Norris and D. W. Ribbons, eds., Academic Press, Inc., New York.

    Google Scholar 

  19. D. B. Archer and N. R. King, A novel ultrastructural feature of a gas-vacuolated Methanosarcina, FEMS Microbiology Letters 16: 217–223.

    Article  Google Scholar 

  20. G. E. Powell, Equalization of specific growth rates for syntrophic associations in batch culture, J. Chem. Technol. Biotechnol. 34B: 97–100 (1984).

    CAS  Google Scholar 

  21. J. H. Thiele and J. G. Zeikus, Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in floes, Appl. Environ. Microbiol.54: 20–29 (1988).

    PubMed  CAS  Google Scholar 

  22. D. R. Boone, R. L. Johnson and Y. Liu, Diffusion of the interspecies electron carrier H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake, Appl. Environ. Microbiol.55: 1735–1741 (1989).

    PubMed  CAS  Google Scholar 

  23. M. W. Peck and D. B. Archer, Methods for the quantification of methanogenic bacteria, International Industrial Biotechnology9: 5–12, (1989).

    Google Scholar 

  24. D. Lloyd, R. I. Scott and T. N. Williams, Membrane-inlet mass spectrometry: measurement of dissolved gases in fermentation liquids, Trends Biotechnol1: 60–63 (1983).

    Article  CAS  Google Scholar 

  25. B. H. Kirsop, IM. G. Hilton, G. E. Powell and D. B. Archer, Methanogenesis in the anaerobic treatment of food-processing wastes, in: “Microbiological Methods for Environmental Biotechnology”, pp. 139–158, J. M. Grainger and J. M. Lynch, eds., Academic Press, London (1984).

    Google Scholar 

  26. R. Conrad, T. J. Phelps and J. G. Zeikus, Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments, Appl. Environ. Microbiol. 50: 595–601 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Benstead, J., Archer, D.B., Lloyd, D. (1990). Role of Hydrogen in the Growth of Mutualistic Methanogenic Cocultures. In: Bélaich, JP., Bruschi, M., Garcia, JL. (eds) Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer. Federation of European Microbiological Societies Symposium Series, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0613-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0613-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7892-4

  • Online ISBN: 978-1-4613-0613-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics