Molecular Hydrogen and Energy Conservation in Methanogenic and Acetogenic Bacteria

  • Richard Sparling
  • Gerhard Gottschalk
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 54)


Molecular hydrogen is a minor constituent of our atmosphere amounting to about 0.5 ppm (Anonymus, 1976). Nevertheless, it plays an important role in the conversion of organic matter by microorganisms. Although H2 is produced in large amounts, it is rapidly consumed, and can be considered as a very convenient vehicle for transport electrons from one organism to the other. The efficiency of such interspecies hydrogen transfer is such that very little H2 escapes into the immediate environment. For example, Conrad et al., 1985 could only detect 0.2 µM dissolved H2 in sludges and 0.03 µM H2 in sediments tested.


Molecular Hydrogen Methanogenic Bacterium Acetyl Phosphate Para Coccus Denitrificans Ferredoxin Oxidoreductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M.W.W., Mortenson, L.G. and Chen, J.-S., 1981. Hydrogenase. Biochim. Biophys. Acta, 594: 105 – 176.Google Scholar
  2. Badziong, W., and Thauer, R.K., 1978. Growth yield and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Arch. Microbiol. 117: 209 – 214.PubMedCrossRefGoogle Scholar
  3. Blaut, M. and Gottschalk, G., 1984. Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur. J. Biochem. 141: 217 – 222.PubMedCrossRefGoogle Scholar
  4. Blaut, M., Müller, V. and Gottschalk, G., 1987. Proton translocation coupled to methanogenesis from methanol + hydrogen in Methanosarcina barkeri. FEBS Lett. 215: 53 – 57.CrossRefGoogle Scholar
  5. Bobik, T.A., Olson, K.D., Noll, K.M. and Wolfe, R.S., 1987. Evidence that the heterodisulfide of coenzyme M and 7-mercapto-heptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium. Biochem. Biophvs. Res.Commun. 140: 455 – 460.CrossRefGoogle Scholar
  6. Conrad, R., Phelps, T.J. and Zeikus, J.G., 1985. Gas metabolism evidence in support of the juxtaposition of hydrogen - producing and methanogenic bacteria in sewage sludge and lake sediment. Appl. Environ. Microbiol., 50: 595 – 601.PubMedGoogle Scholar
  7. Daniels, L., Sparling, R., and Sprott, G.D., 1984. Bioenergetics of methanogenesis. Biochim. Biophvs. Acta, 768: 113 – 163.PubMedGoogle Scholar
  8. Ellermann, J., Koblet, A., Pfaltz, A. and Thauer, R.K., 1987. One the role of N - 7 - mercaptohetanoyl - O - phospho - L - threonine (component B) in the enzymatic reduction of methyl-coenzyme M to methane. FEBS Lett. 220: 358 – 362.PubMedCrossRefGoogle Scholar
  9. Fuchs, G., 1986. C02 fixation in acetogenic bacteria, variations on a theme. FEMS Microbiol. Rev. 29: 181 – 213.CrossRefGoogle Scholar
  10. Geerligs, G., Schönheit, P. and Diekert, G., 1989. Sodium dependent acetate formation from CO2 in Peptostreptococcus productus (Strain Marburg).FEMS Microbiol.Lett. 57: 253 – 258.Google Scholar
  11. Heise, R., Müller, V. and Gottschalk, G., 1989. Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J. Bacteriol. (in press).Google Scholar
  12. Inatomi, K.- I., 1986. Characterization and purification of the membrane-bound ATPase of the Archaebacterium Methanosarcina barkeri. J. Bacteriol. 167: 837 – 841.PubMedGoogle Scholar
  13. Ingledew, W.J. and Poole, R.K., 1984. The respiratory chains of Escherichia coli.Microbiol. Rev. 48: 222 – 271.PubMedGoogle Scholar
  14. Jarrell, K.F., Bird, S.E. and Sprott, G.D., 1984. Sodium dependent isoleucine transport in the methanogenic archaebacterium Methanococcus voltae. FEBS Lett. 166: 357 – 361.CrossRefGoogle Scholar
  15. Jungermann, K., Leimenstoll, G., Rupprecht, E., and Thauer, R.K., 1971. Demonstration of NADH-ferredoxin reductase in two saccharolytic Clostridia.Arch. Microbiol. 80: 370 – 372.Google Scholar
  16. Jungermann, K., Thauer, R.K., Leimenstoll, G. and Decker, K., 1973. Function of pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia.Biochim. Biophvs. Acta. 305: 268 – 280.Google Scholar
  17. Jussofie, A., Mayer, F. and Gottschalk, G., 1986. Methane formation from Methanol and molecular hydrogen by protoplasts of new methanogenic isolates and inhibition by dicyclohexylcarbodiimide. Arch. Microbiol. 146: 245 – 246.CrossRefGoogle Scholar
  18. Keltjens, J.T: and van der Drift, C., 1986. Electron transfer reactions in methanogens. FEMS Microbiol. Rev. 39: 259 – 303.CrossRefGoogle Scholar
  19. Kröger, A., 1980. Bacterial electron transport to fumarate. In: “ Diversity of Bacterial respiratory systems ”, Vol. II. pp. 1–18. C.J. Knowles (ed.), CRC Press, Boca Raton.Google Scholar
  20. Lee, M.J. and Zinder, S.H., 1988. Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic coculture. Appl. Environ. Microbiol., 54: 1457 – 1461.PubMedGoogle Scholar
  21. Ljungdahl, L.G., 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol. 40: 415 – 450.CrossRefGoogle Scholar
  22. Meinecke, B., Bertram, J. and Gottschalk, G., 1989. Purification and characterization of the pyruvate - ferredoxin oxidoreductase from Clostridium acetobutylicum.Arch. Microbiol. 152: 244 – 250.PubMedCrossRefGoogle Scholar
  23. Miller, T.L. and Wolin, M.J., 1985. Methanosphaera stadtmaniae gen. nov. sp. nov.: a species that forms methane by reducing methanol with H2. Arch. Microbiol. 141: 116 – 121.PubMedCrossRefGoogle Scholar
  24. Müller, V., Blaut, M. and Gottschalk, G., 1986. Generation of a transmembrane gradient of Na+ in Methanosarcina barkeri. Eur. J. Biochem. 162: 461 – 466.CrossRefGoogle Scholar
  25. Müller, V., Winner, C. and Gottschalk, G., 1988. Electron - transport - driven sodium extrusion during methanogenesis from formaldehyde and molecular hydrogen by Methanosarcina barkeri. Eur. J. Biochem. 178: 519 – 525.PubMedCrossRefGoogle Scholar
  26. Odom, J.M. and Peck, H.D., 1984. Hydrogenase, electron transfer proteins, and energy coupling in the sulfate - reducing bacteria Desulfovibrio. Ann. Rev. Microbiol. 38: 551 – 592.CrossRefGoogle Scholar
  27. Perski, HJ., Schönheit, P. and Thauer, R.K., 1982. Sodium dependence of methane formation in methanogenic bacteria. FEBS Lett. 143: 323 – 326.CrossRefGoogle Scholar
  28. Robinson, J.A. and Tiedje, J.M., 1984. Competition between sulfate - reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137: 26 – 32.CrossRefGoogle Scholar
  29. Schlegel, H.G., 1987. Aerobic hydrogen - oxidizing (Knallgas) bacteria. In: “Autotrophic bacteria”, pp. 305 – 329, H.G. Schlegel and B. Bowien (eds.) Springer Verlag, Heidelberg.Google Scholar
  30. Stam, H., Stouthamer, A.H. and van Versefeld, H.W., 1987. Hydrogen metabolism and energy costs of nitrogen fixation. FEMS. Microbiol. Rev. 46: 73 – 92.CrossRefGoogle Scholar
  31. Thauer, R.K., Jungermann, R. and Decker, K., 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100 – 180.PubMedGoogle Scholar
  32. Vignais, P.M., Colbeau, A., Willison, J.C. and Jouanneau, Y., 1985. Hydrogenase, nitrogenase and hydrogen metabolism in phototrophic bacteria. Adv. Microbiol. Physiol. 26: 156 – 234.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Richard Sparling
    • 1
  • Gerhard Gottschalk
    • 1
  1. 1.Institut für MikrobiologieGöttingenGermany

Personalised recommendations