Skip to main content

Normalization Theorems for the Intuitionistic Systems with Choice Principles

  • Chapter
Mathematical Logic

Abstract

We review here some intuitionistic systems with choice principles

$$\forall x\left( {Ey} \right)A\left( {x,y} \right) \to \left( {Ef} \right)\forall xA\left( {x,f\left( x \right)} \right)$$
(1)

for which normalization theorems have been established. These are mainly first order systems or systems close to the first order ones in their deductive power. This is not accidental, since in higher order intuitionistic logic with extensionality choice seems to imply excluded third [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Goodman and J. Myhill, Choice implies excluded middle, Z.math.Log. and Grundl.Math. 24: 461 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  2. G. E. Mints, Heyting predicate calculus with epsilon—symbol, Zap. Nauch.Sem. Leningrad.Otd.Mat.Inst. Akad. Nauk SSSR 40:101 (1974). English translation: J.Sovïath. 8: 317 (1977).

    MATH  Google Scholar 

  3. A. Dragalin, Intuitionistic logic and Hilbert’s epsilon—symbol, in: “History and Methodology of Natural Sciences,” Moscow Univ. Press, Moscow 16:78 (1974) (in Russian).

    Google Scholar 

  4. D. Leivant, “Existential Instantiation in a System of Natural Deduction for Intuitionistic Arithmetic,” Stichting Math. Centrum, Amsterdam (1973).

    Google Scholar 

  5. S. Maehara, A general theory of completeness proofs, Ann.Jap. Ass. Philos.Sci. 3:54 (1970).

    MathSciNet  Google Scholar 

  6. K. Shirai, Intuitionistic predicate calculus with epsilon—symbols, Ann.Jap.Ass.Philos.Sci. 4: 49 (1971).

    MathSciNet  MATH  Google Scholar 

  7. V. Smirnov, Elimination des termes epsylon dans le logique intuitioniste, Revue Intern, de Philosophie 98: 512 (1971).

    Google Scholar 

  8. G. Mints, Skolem’s method of elimination of positive quantifiers in sequential calculi, Soviet Math. Dokl. 7:861 (1966).

    MATH  Google Scholar 

  9. C. Smorynski, On axiomatizing fragments, J.Symbol.Log. 42: 530 (1977).

    Article  MathSciNet  Google Scholar 

  10. D. Miller and G. Nadatur, Higher order logic programming, in: “Proc. Third Int. Logic Progr. Conf.,” London, June 1986, 448.

    Google Scholar 

  11. G. Mints, The Herbrand theorem, in: “Mathematical Theory of Logical Deduction,” Nauka, Moscow (1967), 311 (in Russian).

    Google Scholar 

  12. G. Mints, Finite investigation of infinite derivations, Zap.Nauch.Sem. Leningrad.Otd.Mat.Inst. Akad. Nauk SSSR 49:57 (1975). English translation: J.Sov.Math. 10: 548 (1978).

    Google Scholar 

  13. H. Schwichtenberg, A normal form for natural deduction in a type theory with realizing terms, in: Atti del Congresso, “Logica e Filosofia della Scienza,” Logica. CLUEB, Bologna (1986), I: 95.

    Google Scholar 

  14. A. Leisenring, “Mathematical Logic and Hilbert’s Epsilon—symbol,” MacDonald, London (1969).

    Google Scholar 

  15. H. Osswald, Über Skolemerweiterungen in der intuitionistischen Logik mit Gleichheit, Lect. Notes Math. 500:264 (1975).

    Article  MathSciNet  Google Scholar 

  16. N. Goodman, The faithfulness of the interpretation of arithmetic in the theory of constructions, J. Symbolic Logic 38:453 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Howard, The formulae—as—types notation of construction, in: “To H. B. Curry. Essays on Logic, Lambda Calculus and Formalism,” Academic Press, London (1980), 479–490.

    Google Scholar 

  18. A. Troelstra, ed., Mathematical investigation of intuitionistic arithmetic and analysis, Lect. Notes Math. N344 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Mints, G. (1990). Normalization Theorems for the Intuitionistic Systems with Choice Principles. In: Petkov, P.P. (eds) Mathematical Logic. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0609-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0609-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7890-0

  • Online ISBN: 978-1-4613-0609-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics