Skip to main content

Normal Modal Logics in Which the Heyting Propositional Calculus can be Embedded

  • Chapter
Mathematical Logic

Abstract

Let t(A) be the result of prefixing the necessity operator ❑ to every proper subformula, save conjunctions and disjunctions, of the formula A of the language of the Heyting propositional calculus H. It is well-known that H can be embedded by t in S4, i.e. A is provable in H iff t(A) is provable in S4. Esakia (1979), and also Blok (1976), have shown that S4Grz (defined below) is the maximal normal extension of S4 in which H can be embedded by t (as a matter of fact, we find in Esakia (1979) not t, but the translation which prefixes ❑ to every subformula; this translation is equivalent to t as far as S4 and its normal extensions are concerned).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • van Benthem, J.F.A.K., and Blok, W.J., 1978, Transitivity follows from Dummett’s axiom, Theoria, 44: 117–118.

    Article  MathSciNet  MATH  Google Scholar 

  • Blok, W.J., 1976, “Varieties of Interior Algebras”, dissertation, University of Amsterdam.

    Google Scholar 

  • Blok, W.J., and Dwinger, Ph., 1975, Equational classes of closure algebras I, Indag. Math., 37: 189–198.

    MathSciNet  Google Scholar 

  • Boolos, G., 1979, “The Unprovability of Consistency: An Essay in Modal Logic”, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Chagrov, A.V., 1985, Varieties of logical matrices (in Russian), Algebra i Logika, 24:426–489 (English translation in: Algebra and Logic, 24:278–325).

    Google Scholar 

  • Došen, K., 1981, Minimal modal systems in which Heyting and classical logic can be embedded, Publ. Inst. Math. (Beograd) (N.S.), 30 (44): 41–52.

    Google Scholar 

  • Došen, K., 1985, Models for stronger normal intuitionistic modal logics, Studia Logica, 44: 39–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Došsen, K., 1986, Modal translations and intuitionistic double negation, Logique et Anal. (N.S.), 29: 81–94.

    MathSciNet  Google Scholar 

  • Došen, K., 1986a, Higher-level sequent-systems for intuitionistic modal logic, Publ. Inst. Math. (Beograd) (N.S.), 39 (53): 3–12.

    Google Scholar 

  • Esakia, L.L., 1979, On the variety of Grzegorczyk algebras (in Russian), in: “Issledovaniya po neklassicheskim logikam i teorii mnozhestv”, Nauka, Moscow, 257–287 (Math. Rev. 81j:03097; according to references in this paper, the results presented were announced in 1974 ).

    Google Scholar 

  • Flagg, R.C., and Friedman, H., 1986, Epistemic and intuitionistic formal systems, Ann. Pure Appl. Logic, 32: 53–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Girard, J.-Y., 1987, Linear logic, Theoret. Comput. Sci., 50:1–102.

    MathSciNet  MATH  Google Scholar 

  • Lemmon, E.J., and Scott, D.S., 1977, “An Introductio7n to Modal Logic: The ‘Lemmon Notes”, Blackwell, Oxford.

    Google Scholar 

  • Maksimova, L.L., and Rybakov, V.V., 1974, On the lattice of normal modal logics (in Russian), Algebra i Logika, 13:188–216 (English translation in: Algebra and Logic, 13:105–122).

    Google Scholar 

  • Ono, H., 1977, On some intuitionistic modal logics, Publ. Res. Inst. Math. Sci. (Kyoto), 13: 687–722.

    Article  MATH  Google Scholar 

  • Rasiowa, H., and Sikorski, R., 1963, “The Mathematics of Metamathematics”, Panstwowe Wydawnictwo Naukowe, Warsaw.

    MATH  Google Scholar 

  • Sotirov, V.H., 1984, Modal theories with intuitionistic logic, in: “Mathematical Logic”, Proceedings of the Conference Dedicated to Markov, Bulgarian Academy of Sciences, Sofia, 139–171.

    Google Scholar 

  • Veldman, W., 1976, An intuitionistic completeness theorem for intui-tionistic predicate logic, J. Svmboli Logic, 41:159–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Došen, K. (1990). Normal Modal Logics in Which the Heyting Propositional Calculus can be Embedded. In: Petkov, P.P. (eds) Mathematical Logic. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0609-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0609-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7890-0

  • Online ISBN: 978-1-4613-0609-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics