Immunocompetent-Like Cells in Human Fetal Brain Cultures

  • M. G. Ennas
  • S. Torelli
  • V. Sogos
  • C. Marcello
  • A. Riva
  • F. Gremo


The role played by endogenous brain cells in the pathogenesis of several diseases of the human Central Nervous System (CNS) is still rather obscure. In brain, besides neurons, other cells are present, like microglial cells, which are believed to be macrophage precursors and have been shown to express in vitro Fc receptors and to phagocytose.1 Moreover, the presence of pluripotential hemopoietic stem cells in adult mouse brain has been reported.2 Recent studies have also shown that astrocytes can act as macrophages3 and, under appropriate stimulation, as antigen-presenting cells.4 Purified astrocyte cultures from mammalian brain can produce interleukin I, II and III-like molecules, 5,6 further substantiating the hypothesis that glial cells can play an autonomous role in the immunological events of CNS.


Glial Fibrillary Acidic Protein Human Central Nervous System Human Fetal Brain Adult Mouse Brain Human Fetal Astrocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. C. Raff, K.L. Fields, S.I. Hakomori, R. Mirsky, RM. Pruss and J. Winter, Cell-type specific markers for distinguishing and studying neurones and the major classes of glial cells in culture, Brain Res., 174:283–308 (1979).CrossRefGoogle Scholar
  2. 2.
    P. F. Bartlett, Pluripotential hemopoietic stem cells in adult mouse brain, Proc. Natl Acad. Sci. USA, 79:2722–2725 (1982).CrossRefGoogle Scholar
  3. 3.
    H. Kusaka, A. Hirano, M.B. Bornstein, G.R.W. Moore, and C.S. Raine, Transformation of cells of astrocyte lineage into macrophage-like cells in organotypic cultures of mouse spinal cord, J.Neural.Sci., 72:77–89 (1986).CrossRefGoogle Scholar
  4. 4.
    A Fontana, W. Fierz and H. Wekerle, Astrocytes present myelin basic protein to encephalitogenic T-cell lines, Nature, 307:273 (1984).CrossRefGoogle Scholar
  5. 5.
    A Fontana, F. Kristensen, R. Dubs, D. Gemsa, and E. Weber, Production of prostaglandin E and interleukin I-like factors by cultured astrocytes and C-6 glioma cells, J.Immunol., 129:2413–2419 (1982).Google Scholar
  6. 6.
    K. Frei, S. Booder, C. Schwerdel, and A. Fontana, Astrocytes of the brain synthesize interleukin III-like factors, J.Immunol., 35:4044–4047 (1985).Google Scholar
  7. 7.
    S. U. Kim, G. Moretto, and D.H. Shin, Expression of la antigens of the surface of human oligodendrocytes and astrocytes in culture, J.Neuroimmunol, 10:141–149 (1985).CrossRefGoogle Scholar
  8. 8.
    M. G. Marrosu, M.G. Ennas, S. Torelli, V. Sogos, P. Puligheddu, U. Lecca, and F. Gremo, Spontaneous expression of Ia antigen (HLA-DR) in cultured cells of human fetal brain at different stages of gestation this volume pages 103–109.Google Scholar
  9. 9.
    M. Pulver, S. Carrel, J.P. Mach, and N. De Tribolet, Cultured human fetal astrocytes can be induced by interferon-gamma to express HLA-DR, J.Neuroimmunol., 14:123–133 (1987).CrossRefGoogle Scholar
  10. 10.
    T. Mauerhoff, R. Pujol-Borrel, R. Mirakian, and G.F. Bottazzo, Differential expression and regulation of major histocompatibility complex (MHC) products in nueronal and glial cells of the human fetal brain, J.Neuroimmunol., 18:271–289 (1988).CrossRefGoogle Scholar
  11. 11.
    F. Gremo, S. Torelli, V. Sogos, A. Riva, C. Marcello, U. Lecca, Morphological and immunocitochemical characterization of human fetal brain cultures, Soc.Neurosci.Abstract, vol 13, part. II, p. 1119 (1987).Google Scholar
  12. 12.
    B. Pettmann, J.C. Louis, M. Sensenbrenner, Morphological and biochemical maturation of neurons cultured in the absence of glial cells, Nature, 281:378–380 (1979).CrossRefGoogle Scholar
  13. 13.
    M. C. Raff, R.H. Miller, M. Noble, A glial progenitor cell that develops in vitro into a astrocyte of an oligodendrocyte depending on culture medium, Nature, 303:390–396 (1983).CrossRefGoogle Scholar
  14. 14.
    G. A. Elder and E.O. Major, Early appearance of type II astrocytes in developing human fetal brain, Dev.Brain Research, 42:146–150 (1988).CrossRefGoogle Scholar
  15. 15.
    V. W. Yong, S.U. Kim, and D.E. Pleasure, Growth factors for fetal and adult human astrocytes in culture, Brain Res., 444:59–66 (1988).CrossRefGoogle Scholar
  16. 16.
    E. J. Quackenbush, T.F. Cruz, M.A Moscarello, and M. Le Tarte, Identification of three antigens in human brain associated with similar antigens of human leukaemic cells, Biochem. J., 225:291–299 (1985).Google Scholar
  17. 17.
    S. Schuller-Petrovic, W. Gebhart, H.Lassmann, H.Rumpold, and D. Kraft, A shared antigenic determinant between natural killer cells and nervous tissue, Nature 306:179–181 (1983).CrossRefGoogle Scholar
  18. 18.
    R C. McGarry, S.L. Helfand, RA. Quarles, and J.C. Roder, Recognition of myelin-associated glycoprotein by the monoclonal antibody HNK-I, Nature, 306:376–378, (1983).CrossRefGoogle Scholar
  19. 19.
    J. Kruse, R. Mailhammer, H. Wernecke, A. Faissner, I. Sommer, C. Goridis, and M. Schachner, Neural cell adhesion molecules and myelinassociated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-I., Nature, 311:153–155 (1984).CrossRefGoogle Scholar
  20. 20.
    A. C. H. Granholm, P. Almquist, Å. Seiger, and L. Olson, Thy. 1-like immunoreactivity in human brain during development, Brain Res.Bull., 17:107–212, (1986).CrossRefGoogle Scholar
  21. 21.
    R Mirsky and E.J. Thompson, Thy.1 (Theta) antigen on the surface of morphologically distinct brain cell types, Cell 4:95–101 (1975).CrossRefGoogle Scholar
  22. 22.
    P. J. Maddon, A.G. Dalgleish, J.S. McDougal, P.R Clapham, RA. Weiss, and R. Axel, The T4 gene encodes the AIDS virus receptor and is expressed in the Immune System and the Brain, Cell 47:333–348 (1986).CrossRefGoogle Scholar
  23. 23.
    A G. Dalgleish, P.C.L. Beverley, P.R Clapham, D.H. Crawford, M.F. Greaves, and RA. Weiss, The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus, Nature, 312:763–766 (1984).CrossRefGoogle Scholar
  24. 24.
    J. S. McDougal, A. Mawle, S.P. Cort, J.K.A. Micholson, G.D. Cross, J.A. Sheppler-Campbell, D. Hicks, and J. Sligh, Cellular tropism of the human retrovirus HTLV-III/LAV I. Role of T cell activation and expression of the T4 antigen, J.Immunol., 135:3151–3162 (1985).Google Scholar
  25. 25.
    L. Lauro, Role of astroglia in CNS immune response, Proc.Int.Symp., Trends in Neuroimmunology, p. 34 (1988).Google Scholar
  26. 26.
    R P Saneto, F. Chiappelli, and J.De Vellis, Interleukin-2 inhibition of oligodendrocyte progenitor cell proliferation depends on expression of the TAC receptor, J.Neurosci.Res., 18:147–154 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. G. Ennas
    • 1
  • S. Torelli
    • 1
  • V. Sogos
    • 1
  • C. Marcello
    • 2
  • A. Riva
    • 1
  • F. Gremo
    • 1
  1. 1.Department of CytomorphologySchool of MedicineCagliariItaly
  2. 2.Institut of Obstetrics and GynecologySchool of MedicineCagliariItaly

Personalised recommendations