Quantum Molecular Dynamics Simulation of Electron Bubbles in a Dense Helium Gas

  • Rajiv K. Kalia
  • P. Vashishta
  • S. W. de Leeuw
  • John Harris

Abstract

In recent years, mixed quantum-classical systems consisting of excess electrons interacting with classical many-body systems at finite temperatures have been studied extensively with computer-simulation techniques1. The simulation methods for these systems include the path integral Monte Carlo1 or molecular dynamics2 and dynamical simulated annealing3. The latter can only provide the ground-state static properties of the quantum particles. The path integral approach has been used successfully to calculate the equilibrium properties, but the study of time correlation functions4 is not reliable at long times. However, the recently developed quantum molecular dynamics method, which deals directly with the time-dependent Schrödinger equation, contains all the dynamical information for quantum particles.

Keywords

Helium Percolate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    B. J. Berne and D. Thirumalai in Annual Reveiew of Physical Chemistry, vol 37, eds. H. L. Strauss, G. T. Babcock, and C. Bradley Moore, ( Annual Reviews Inc. Palo Alto, 1986 ) pp. 401–424.Google Scholar
  2. 2).
    M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984).CrossRefGoogle Scholar
  3. 3).
    R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).CrossRefGoogle Scholar
  4. 4).
    J. D. Doll and D. L. Freeman, J. Phys. Chem. 92, 3278 (1988).CrossRefGoogle Scholar
  5. 5).
    A. Selloni, P. Carnevali, R. Car, and M. Parrinello, Phys. Rev. Lett. 59, 823 (1987).CrossRefGoogle Scholar
  6. 6).
    M. D. Feit, J. A. Fleck, and A. Steiger, J. Comp. Phys. 47, 412 (1982).CrossRefGoogle Scholar
  7. 7).
    A. Rahman, Correlation Functions and Quasiparticle Interactions in Condensed Matter, ed. J. Woods Halley, (Plenum, N.Y., 1978) pp. 417–433.Google Scholar
  8. 8).
    R. K. Kalia, P. Vashishta, and S. W. de Leeuw, J. Chem. Phys. 90, 6802 (1989).CrossRefGoogle Scholar
  9. 9).
    N. R. Kestner, J. Jortner, M. H. Cohen, and S. A. Rice, Phys. Rev. 140, A56 (1965).CrossRefGoogle Scholar
  10. 10)R. K. Kalia and J. Harris, to be published.Google Scholar
  11. 11).
    S. Nosé, Mol. Phys. 52, 255 (1984).CrossRefGoogle Scholar
  12. 12).
    A. Bartels, Appl. Phys. 8, 59 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Rajiv K. Kalia
    • 1
  • P. Vashishta
    • 1
  • S. W. de Leeuw
    • 2
  • John Harris
    • 3
  1. 1.Materials Science DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Universiteit van AmsterdamAmsterdamThe Netherlands
  3. 3.Institut für Festkörperforschung der KernforschungsanlageJülichWest Germany

Personalised recommendations