Skip to main content

Correlated Wave Functions Theory of the Spectral Function

  • Chapter
Condensed Matter Theories

Abstract

A microscopic theory based on orthogonal correlated basis functions is presented for the single particle spectral function of an infinite Fermi system. The method is used to calculate the nucleon spectral function P(k,E) for a realistic model of nuclear matter in which spin-isospin and tensor correlations are fully taken into account. P(k, E) is analyzed in terms of a single-particle strength, completely determined by two-body breakup processes, and a background, mainly provided by three-body breakup processes. The strength of single-particle states close to the Fermi surface can be measured by (e,e′p) reactions in kinematical conditions corresponding to low missing energy E, whereas the background requires a wide range of E values, extended up to several hundreds of MeV. The relations between P(k, E), the momentum distribution n(k)and the response function S(q, w) at high momentum transfers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.deForest, Jr., J.D.Walecka, Advances in Phys. 15 (1966) 1; A.E.L.Dieperink and T.de Forest Jr., Ann. Rev. Nucl. Science 25 (1975) 1; S.Frullani and J.Mougey, Adv. Nucl. Phys. 14 (1984) 1

    Google Scholar 

  2. C.Ciofi degli Atti, E.Pace and G.Salme’, Phys. Rev. C21 (1980) 805

    Google Scholar 

  3. A.E.L. Dieperink, T. de Forest Jr., I.Sick and R.A.Brandeburg, Phys. Lett. B63 (1976) 261; H.Maier-Hajduk, Ch.Hajduk, P.U.Sauer and W.Theis, Nucl. Phys. A395 (1983) 332

    Google Scholar 

  4. O.Benhar, A.Fabrocini and S.Fantoni, Nucl. Phys. A(1989) in press; Electron- Nucleus Scattering, A. Fabrocini et al. eds.,World Scientific, Singapore,1989, 330

    Google Scholar 

  5. S.Fantoni and V.R.Pandharipande, Nucl. Phys. A427 (1984) 473

    Google Scholar 

  6. J.G.Zabolitsky and W.Ey, Phys. Lett. B76 (1978) 527

    Google Scholar 

  7. J.W.Van Orden, W.Truex and M.K.Banerjee, Phys. Rev. C21 (1980) 2628

    Google Scholar 

  8. O.Benhar, C.Ciofi degli Atti, S.Liuti and G.Salme’, Phys. Lett. B177 (1986) 135

    Google Scholar 

  9. R.Schiavilla, V.R.Pandharipande and R.B.Wiringa, Nucl. Phys. A449 (1986) 219

    Google Scholar 

  10. C.Ciofi degli Atti, E.Pace and G.Salme’, Phys. Lett. 141B (1984) 14

    Google Scholar 

  11. V.R.Pandharipande, C.N.Papanicolas, J.Wambach, Phys. Rev. Lett. 53 (1984) 1133

    Google Scholar 

  12. B.Frois and C.N.Papanicolas, Ann. Rev. Nucl. Part. Sci. 37 (1987) 4133 and references therein

    Google Scholar 

  13. J.M.Cavedon et al. Phys. Rev. Lett. 49 (1982) 978; B.Frois et al., Nucl. Phys. A396 (1983) 409

    Google Scholar 

  14. C.N.Papanicolas et al., Phys. Rev. Lett. 58 (1987) 2296.

    Google Scholar 

  15. J.Lichtenstadt et al. Phys. Rev. C20 (1979) 497

    Google Scholar 

  16. O.Benhar, A.Fabrocini and S.Fantoni, preprint (1989)INFN-ISS89/2

    Google Scholar 

  17. I.Sick, in Momentum Distribution, R.N.Silver and P.E.Sokol,Plenum Press, NY, 1988, in press

    Google Scholar 

  18. I.Sick, D.Day and J.S.Mc Carthy, Phys. Rev. Lett. 45 (1980) 871

    Google Scholar 

  19. E.Pace and G.Salme’, Phys. Lett. B110 (1982) 411

    Google Scholar 

  20. I.E.Lagaris and V.R.Pandharipande, Nucl. Phys. A359 (1981) 331

    Google Scholar 

  21. I.E.Lagaris and V.R.Pandharipande, Nucl. Phys. A359 (1981) 349

    Google Scholar 

  22. C.R.Chen et al. Phys. Rev. C33 (1986) 1740

    Google Scholar 

  23. J.Carlson, Phys. Rev. C36 (1987) 2026; Phys. Rev. (1988) in press

    Google Scholar 

  24. V.R.Pandharipande, private communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Benhar, O., Fabrocini, A., Fantoni, S. (1990). Correlated Wave Functions Theory of the Spectral Function. In: Aguilera-Navarro, V.C. (eds) Condensed Matter Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0605-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0605-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7888-7

  • Online ISBN: 978-1-4613-0605-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics