Surface Enhanced Luminescence with Silver Exchanged Zeolites

  • James F. Tanguay
  • Steve L. Suib


Silver clusters have been produced in zeolites by a variety of different synthetic routes by several research groups. The types of clusters produced are quite dependent on the type of zeolite, concentration of silver, and type of activation. We have been studying the enhancement of luminescence of luminophores such as rhodamine in the presence of a variety of silver clusters in zeolites. The enhancement of luminescence has been studied with steady state and lifetime methods. The type of silver clusters present in the zeolites has been characterized by diffuse reflectance, luminescence, and electron paramagnetic resonance methods. The data suggest that several silver clusters are present when surface enhanced luminescence is observed. Since deposition of rhodamine onto the silver exchanged zeolites causes a change in the types of silver species it is necessary to characterize the clusters after deposition of the luminophore. Factors influencing the surface enhanced luminescence will be discussed.


Electron Paramagnetic Resonance Luminescence Intensity Silver Cluster Electron Paramagnetic Resonance Method Silver Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glass, A. M.; Liao, P. F.; Bergman, J. G.; Olson, D. H. Optics Letters 1980, 5, 368–370.CrossRefGoogle Scholar
  2. 2.
    Chang, R. K.; Owen, J. F.; Barber, P. W.; Dorain, P. B. Phys. Rev. Lett. 1981, 47, 1075–1078.CrossRefGoogle Scholar
  3. 3.
    Jacobs, P. A.; Uytterhoeven, J. B. J. Chem. Soc., Chem. Commun. 1977, 128–129.Google Scholar
  4. 4.
    Kevan, L.; Narayana, M.; Li, A. S. W. J. Phys. Chem. 1985, 89, 132–135.Google Scholar
  5. 5.
    Ozin, G. A.; Hugues, F. J. Phys. Chem. 1982, 86, 5174–5179.CrossRefGoogle Scholar
  6. 6.
    Ozin, G. A.; Baker, M. D.; Godber, J. J. Phys. Chem. 1985, 89, 305–311.CrossRefGoogle Scholar
  7. 7.
    Carrado, K. A.; Suib, S. L.; Skoularikis, N. D.; Coughlin, R. W. Inorg. Chem. 1986, 25, 4217–4221.CrossRefGoogle Scholar
  8. 8.
    Carrado, K. A.; Kostapapas, A.; Suib, S. L. Sol. State Ionics 1988, 26, 77–86.CrossRefGoogle Scholar
  9. 9.
    Occelli, M. L.; Psaras, D.; Suib, S. L. J. Catal. 1985, 96, 363–370.CrossRefGoogle Scholar
  10. 10.
    Tanguay, J. F.; Suib, S. L. Catal. Rev. Sci. Eng. 1987, 29, 1–40.CrossRefGoogle Scholar
  11. 11.
    Tanguay, J. F. Ph.D. Thesis, University of Connecticut, 1988.Google Scholar
  12. 12.
    Willis, W. S.; Suib, S. L. J. Am. Chem. Soc. 1986, 108, 5657–5659.CrossRefGoogle Scholar
  13. 13.
    Fyfe, C. A.; Kokotailo, G. T.; Graham, J. D.; Browning, C.; Gobbi, G. C.; Hyland, M.; Kennedy, G. J.; DeSchutter, C. T. J. Am. Chem. Soc. 1986, 108, 522–523.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • James F. Tanguay
    • 1
  • Steve L. Suib
    • 1
  1. 1.Department of Chemistry and Institute of Materials Science and Department of Chemical EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations