Skip to main content

Motion of Organic Species Occluded or Sorbed Within Zeolites [1]

  • Chapter
Inclusion Phenomena and Molecular Recognition

Summary

Containment of organic species within microporous materials such as zeolites influences their modes of molecular motion. This manifests itself in a range of ways, including a reduction in the volume that is readily accessible to the molecules by translation, constraints upon the molecular conformational space, restricted modes of molecular reorientation, or altered vibrational frequencies. The perspectives on certain of the motional properties of sorbates and of tetramethylammonium cations within zeolites provided by simple molecular modelling, neutron powder diffraction, 13C and 2H(D) NMR, and inelastic and quasielastic neutron scattering are outlined and illustrated by selected recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Work supported in part by the U. S. Department of Energy, BES-Materials Sciences, under contract W-31–109-ENG-38.

    Google Scholar 

  2. Breek, D. W. Zeolite Molecular Sieves: Structure, Chemistry and Use; Wiley and Sons: London, 1973. Reprinted, R. E. Krieger: Malabar Fl, 1984.

    Google Scholar 

  3. Barrer, R. M. Zeolites and Clay Minerals as Sorbents and Molecular Sieves; Academic Press: London, 1978.

    Google Scholar 

  4. Barrer, R. M. Hydrothermal Chemistry of Zeolites; Academic Press: London, 1982.

    Google Scholar 

  5. Olson, D.; Bisio, A. Eds. Proc. Sixth Int. Zeolite Conf.; Butterworths: Surrey, UK, 1984.

    Google Scholar 

  6. Murakami, Y.; Iijima, A.; Ward, J. W. Eds. New Developments in Zeolite Science and Technology; Kodansha: Tokyo - Elsevier: Amsterdam, 1986.

    Google Scholar 

  7. Newsam, J. M. Science 1986,231, 1093–1099.

    Article  CAS  Google Scholar 

  8. Vaughan, D. E. W.In Properties and Applications of Zeolites; Chem. Soc: London, 1980; Special Pub. No. 33, pp. 294-328.

    CAS  Google Scholar 

  9. Ruthven, D. M. Principles of Adsorption and Adsorption Processes; Wiley-Inter-science: New York, 1984.

    Google Scholar 

  10. Suffritti, G.; Gamba, A. Int. Rev. Phys. Chem. 1987, 6, 299–314.

    Article  CAS  Google Scholar 

  11. Newsam, J. M. Aspects of Zeolite Structure Modeling and Graphics, in preparation

    Google Scholar 

  12. Jackson, R. A.; Catlow, C. R. A. Molec. Simulation, in press.

    Google Scholar 

  13. Ooms, G.; van Santen, R. A.; den Ouden, C J. J.; Jackson, R. A.; Catlow, C. R. A.J. Phys. Chem. 1988, 92, 4462–4465

    Article  CAS  Google Scholar 

  14. Meier, W. M.; Villiger, H. Z. Kristallogr. 1969, 729, 411–423.

    Article  Google Scholar 

  15. Baerlocher, Ch.; Hepp, A.; Meier, W. M. DLS-76 - A Program for Simulation of Crystal Structures by Geometric Refinement (ETH, Zurich Report, 1977)

    Google Scholar 

  16. Ramdas, S.; Thomas, J. M.; Betteridge, P. W.; Cheetham, A. K.; Davies, E. K. Angew. Chem., Int. Ed. Engl. 1984,25, 671–679.

    Article  Google Scholar 

  17. Fyfe, C. A.;Kennedy, G. J.; De Schutter, C. T.; Kokotailo, G. T. J. Chem. Soc, Chem. Commun. 1984, 541–542.

    Google Scholar 

  18. Kiselev, A. V. J. Chem. Tech. Biotechnol. 1979, 29, 673–685.

    Article  CAS  Google Scholar 

  19. Kiselev. A. V.; Du, P. Q. J. Chem. Soc, Faraday Trans. II1981, 77, 17–32.

    Article  CAS  Google Scholar 

  20. Wright, P. A.; Thomas, J. M.; Cheetham, A. K.;Nowak, A. K. Nature (London) 1985,318, 611–614

    Article  Google Scholar 

  21. Fitch, A. N.; Jobic, H.; Renouprez, A. J. Phys. Chem. 1986, 90, 1311–1318.

    Article  CAS  Google Scholar 

  22. Bezus, A. G.; Kocirik, M.; Kiselev, A. V.; Lopatkin, A. A.; Vasilyeva, E. A. Zeolites 1986,6, 101–106.

    Article  CAS  Google Scholar 

  23. Nowak, A. K.; Cheetham, A. K. In New Developments in Zeolite Science Technology; Murakami, Y.; Iijima, A.; Ward, J. W. Eds. Kodansha: Tokyo - Elsevier: Amsterdam, 1986; pp. a475–579.

    Google Scholar 

  24. Newsam, J. M.; Silbernagel, B. G.; Garcia, A. R.; Hulme, R. J. Chem. Soc, Chem. Commun. 1987, 664–666.

    Google Scholar 

  25. Nowak, A. K.; Cheetham, A. K.; Pickett, S. D.; Ramdas, S. Molec. Simulation, in press.

    Google Scholar 

  26. Silbernagel, B. G.; Garcia, A. R.; Newsam, J. M.; Hulme, R., in preparation.

    Google Scholar 

  27. Binder, K. Ed. Monte Carlo Methods in Statistical Physics, Second Edition; Springer-Verlag: New York, 1987.

    Google Scholar 

  28. Fieldler, K.; Grauert, B. Adsorption Sei. Technol. 1986, 3, 181–187.

    Google Scholar 

  29. Kono, H.; Takasaka, A. J. Phys. Chem. 1987, 97, 4044–4055.

    Google Scholar 

  30. Heerman, D. Computer Simulation Methods in Theoretical Physics; Springer-Verlag: New York, 1986.

    Google Scholar 

  31. Demontis, P.; Suffritti, G. B.; Alberti, A.; Quartieri, S.; Fois, E. S.; Gamba, A. Gazz. Chim. Ital. 1986, 116, 459–466.

    CAS  Google Scholar 

  32. Yashonath, S.;Thomas, J. M.; Nowak, A.; Cheetham, A. K. Nature (London) 1988, 331, 601–604.

    Google Scholar 

  33. Newsam, J. M. Physica 1986,136B, 213–217.

    Google Scholar 

  34. Newsam, J. M Materials Science Forum 1987,27/28, 385–396

    Article  Google Scholar 

  35. Taylor, J. C. Zeolites, 1987, 7, 311–318.

    Article  CAS  Google Scholar 

  36. Richardson, J. W.; Pluth, J. J.; Smith, J. V. J. Phys. Chem. 1988, 92, 243–247.

    Article  CAS  Google Scholar 

  37. van Koningsveld, H.; van Bekkum, H.; Jansen, J. C. Acta Cryst. 1987, B43, 127–132.

    Google Scholar 

  38. Baerlocher, Ch.; Meier, W. M. Helv. Chim. Acta 1969,52, 1853–1860.

    Article  CAS  Google Scholar 

  39. Jarman, R. H.; Melchior, M. T. J. Chem. Soc, Chem. Commun. 1984, 414–415.

    Google Scholar 

  40. Melchior, M. T.; Vaughan, D. E. W.; Jarman, R. H.; Jacobson, A. J. presented at Rocky Mtn. Conf. Applied Spectroscopy, Denver CO, Aug. 8, 1984.

    Google Scholar 

  41. Hayashi, S.; Suzuki, K.; Shin, S.; Hayamizu, K.; Yamamoto, O. Chem. Phys. Lett. 1985, 113, 368–371.

    Article  CAS  Google Scholar 

  42. Derouane, E. G.; Nagy, J. B. Chem. Phys. Lett. 1987,137, 341–344.

    Article  CAS  Google Scholar 

  43. Meier, W. M.; Olson, D. H. Atlas of Zeolite Structure Types; Butterworths: London, 1987.

    Google Scholar 

  44. Fraissard,J.;Ito, T.; Springuel-Huet, M.; Demarquay, J. In New Developments in Zeolite Science Technology, Murakami, Y.; Iijima, A.; Ward, J. W. Eds.; Kodansha: Tokyo - Elsevier: Amsterdam, 1986; p. 393.

    Chapter  Google Scholar 

  45. Ripmeester, J. A.; Ratcliffe, C. I., in preparation

    Google Scholar 

  46. Eckman, R. R.; Vega, A. J. J. Am. Chem. Soc. 1983, 105, 4841–4842.

    Article  CAS  Google Scholar 

  47. Eckman, R. R.; Vega, A. J. J. Phys. Chem. 1986, 90, 4679–4683.

    Article  CAS  Google Scholar 

  48. Hasha, D. L.; Miner, V. W.; Garces, J. M.; Rocke, S. C. ACS Symp. Ser. 1985, 288, 485–497.

    Article  CAS  Google Scholar 

  49. Zibrowius, B.; Caro, J.; Pfeifer, H. J. Chem. Soc, Faraday Trans. II1988, 84, 2347–2356

    CAS  Google Scholar 

  50. Egelstaff, P. A.; Stretton Downes, J.; White, J. W. In Molecular Sieves; Barrer, R. M. Ed.; Soc. Chem. Ind.: London, 1968; pp. 306–318.

    Google Scholar 

  51. Howard, J.; Waddington, T. C.; Wright, C. J. J. Chem. Soc. Faraday Trans. II 1977, 73, 1768–1787.

    Article  CAS  Google Scholar 

  52. Dutta, P. K.; Del Barco, B.; Shieh, D. C. Chem. Phys. Lett. 1986, 727, 200–204.

    Article  Google Scholar 

  53. Ratcliffe, C. I.;Waddington, T. C. J. Chem. Soc., Faraday Trans. II 1976, 72, 1935–1956

    Article  CAS  Google Scholar 

  54. Brun, T. O.; Iton, L. E.; Kleb, R.; Newsam, J. M.; Beyerlein R. A.; Vaughan, D. E. W. J. Am. Chem. Soc. 1987, 109, 4118–4119.

    Article  CAS  Google Scholar 

  55. Brun, T. O.; Trouw, F.; Curtiss, L. A.; Iton, L. E.; Newsam, J. M.,in preparation

    Google Scholar 

  56. Cohen de Lara, E.;Kahn, R.;Mezei, F. J. Chem. Soc, Faraday Trans. II1983, 79, 1911–1920.

    CAS  Google Scholar 

  57. Jobic, H.; Bee, M.; Renouprez, A. Surf. Sei. 1984,140, 307–320.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Newsam, J.M., Silbernagel, B.G., Melchior, M.T., Brun, T.O., Trouw, F. (1990). Motion of Organic Species Occluded or Sorbed Within Zeolites [1]. In: Atwood, J.L. (eds) Inclusion Phenomena and Molecular Recognition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0603-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0603-0_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7887-0

  • Online ISBN: 978-1-4613-0603-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics