Nucleic Acid Hybridization as a Diagnostic Tool for the Detection of Human Papillomaviruses

  • Robert F. Rando
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 263)


Human papillomavirus (HPV) infections of the anogenital tract present several difficult questions pertaining to diagnosis. The most obvious question is whether a test for papillomavirus in anogenital lesions is necessary, and if so, what information is desired from such a test. If a diagnostic test is sought, then the next problem concerns the multitude of different papillomavirus types found in anogenital tract lesions, the need, if any, to differentiate these multiple types, and the availability of diagnostic probes to do so. The following discussion will elucidate the arguments supporting the need to test for HPV, by briefly describing a number of epidemiologic studies which associate HPV DNA with premalignant and malignant anogenital tract lesions. Molecular biological data which demonstrates the ability of certain papillomaviruses to transform cells in culture will also be reviewed. In addition, the ways in which nucleic acid hybridization techniques apply to the detection of HPV infections will be described, as well as advantages and disadvantages of several different hybridization techniques which can be used to HPV detection in anogenital lesions.


Uterine Cervix Nucleic Acid Hybridization Anogenital Lesion Genital Condyloma Nucleic Acid Hybridization Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Androphy, E.J., D.R. Lowry, and J.T. Schiller, Bovine papillomavirus E2 transactivating gene product binds to specific sites in papillomavirus DNA, Nature. 325:70–73 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    Baker, C.C., and P.M. Howley, Differential promotor utilization by the bovine papillomavirus in transformed cells and productively infected wart tissued, EMBO J. 6:1027–1035 (1987).PubMedGoogle Scholar
  3. 3.
    Baker, C.C., W.C. Phelps, V. Lindgren, M.J. Braun, M.A. Gonda, and P.M. Howley, Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines, J. Virol. 61:962–971 (1987).PubMedGoogle Scholar
  4. 4.
    Beaudenon, S., D. Kremsdorf, O. Croissant, S. Jablonska, S. Wain-Hobson, and G. Orth, A novel type of human papillomavirus associated with genital neoplasia, Nature. 321:246–249 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    Becker, T.M., K.M. Stone, and E.R. Alexander, Genital human papillomaviurs Infection: A growing concern, p. 389–396, in: “Obstetrics and Gynecology Clinics of North America,” R. Reid, ed., vol. 14:2, W.B. Saunders Co., Philadelphia (1987).Google Scholar
  6. 6.
    Beckmann, A.M., D. Myerson, J.R. Daling, N.B. Kiviat, C.M. Fenoglio, and J.K. McDougall, Detection and localization of human papillomavirus DNA in human genital condylomas by in situ hybridization with biotinylated probes, J. Med. Virol. 16:265–273 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    Berg, L.J., K. Singh, and M. Botchan, Complementation of a bovine papillomavirus low-copy-number mutant: Evidence for a temporal requirement of the complementing gene, Mol. Cell. Biol. 6:859–869 (1986).Google Scholar
  8. 8.
    Boshardt, M., L. Gissmann, H. Ikenberg, A. Kleinheinz, W. Schewlen, and H. zur Hausen, A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer, EMBO 3:1151–1157 (1984).Google Scholar
  9. 9.
    Boshart, M., and H. zur Hausen, Human papillomaviruses in BuschkeLowenstein tumors: Physical state of the DNA and identification of a tandem duplication in the noncoding region of a human papillomavirus 6 subtype, J. Virol. 58:963–966 (1986).PubMedGoogle Scholar
  10. 10.
    Byrne, J.C., M.S. Tsao, R.S. Fraser, and P.M. Howley, Human papillomavirus-11 DNA in a patient with chronic laryngotracheobronchial papillomatosis and metastatic squamous-cell carcinoma of the lung, New England J. of Med. 317:873–878 (1987).CrossRefGoogle Scholar
  11. 11.
    Campion, M.J., Clinical manifestations and natural history of genital human papillomavirus infections, p. 363–388, in: “Obstetrics and Gynecology Clinics of North America,” R. Reid, ed., vol. 14:2, W.B. Saunders Co., Philadelphia (1987).Google Scholar
  12. 12.
    Cole, S.T., and O. Danos, Nuclotide sequence and comparative analysis of the human papillomavirus type 18 genome: Phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products, J. Mol. Biol. 193:599–608 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    Cole, S.T., and R.E. Streek, Genome organization and nucleotide sequence in human paillomavirus type 33, which is associated with cervical cancer, J. Virol. 58:991–995 (1986).PubMedGoogle Scholar
  14. 14.
    Chow, L.T., M. Nasseri, S.M. Wolinsky, and T.R. Broker, Human papillomavirus types 6 and 11 mRNAs from genital condylomata acuminata, J. Virol. 61:2581–2583 (1987).PubMedGoogle Scholar
  15. 15.
    DiMaio, D., D. Guralski, and J.T. Schiller, Translation of open reading frame E5 of bovine paillomavirus is required for its transforming activity, Proc. Natl. Acad. Sci. USA 83:1797–1801 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    Doorbar, J., D. Campbell, R.J. Grand, and P.H. Gallimore, Identification of the human papillomavirus-la E4 gene products, EMBO J. 5:355362 (1986).Google Scholar
  17. 17.
    Durst, M., C.M. Croce, L. Gissmann, et al., Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas, Proc. Natl. Acad. Sci. USA 84:1070–1074 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    Durst, M., A. Kleinheinz, M. Hotz, and L. Gissmann, The physical state of human papillomavirus type 16 DNA in benign and malignant tumors, J. Gen. Virol. 66:1515–1522 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    Durst, M., L. Gissmann, H. Ikenberg, and H. zur Hausen, A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsies from different geographic regions, Proc. Natl. Acad. Sci. USA 80:3812–3815 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    Gissmann, L., M. Boshart, M. Durst, H. Ikenberg, D. Wagner, and H. zur Hausen, Presence of human papillomavirus (HPV) in genital tumors, J. Invest. Dermatol. 83:265–285 (1984).CrossRefGoogle Scholar
  21. 21.
    Groff, D.E., and W.D. Lancaster, Genetic analysis of the 3’ early region transformation and replication functions of bovine papillomavirus type 1, Virol. 150:221–230 (1986).CrossRefGoogle Scholar
  22. 22.
    Grussendorf, E.I., and H. zur Hausen, Localization of viral DNA replication in sections of human warts by nucleic acid hybridization with complementary RNA of human papillomavirus type 1, Arch. Dermatol. Res. 264:55–63(1979).Google Scholar
  23. 23.
    Guis, D., and L. Laimins, Constitutive and inducible expression of the HPV-18 enhancer, p. 126, in: “Sixth International Papillomavirus Workshop,” W.D. Lancaster and A.B. Jenson, eds., Georgetown University (1987).Google Scholar
  24. 24.
    Hirochika, H., T.R. Broker, and L.T. Chow, Enhancers and trans-acting E2 transcriptional factors of papillomaviruses, J. Virol. 61:2599–2606 (1987).Google Scholar
  25. 25.
    Hirt, B., Selective extraction of polyoma DNA from infected mouse cell cultures, J. Mol. Biol. 26:365–369 (1967).PubMedCrossRefGoogle Scholar
  26. 26.
    Howley, P.M., M.A. Israil, M.F. Law, and M.A. Martin, A rapid method for detecting and mapping homology between heterologous DNAs, J. Biol. Chem. 254:4876–4883 (1979).PubMedGoogle Scholar
  27. 27.
    Komly, C.A., F. Breitburd, 0. Croissant, and R.E. Streek, The L2 open reading frame of human papillomavirus type la encodes a minor structural protein carrying type specific antigens, J. Virol. 60:813–816 (1986).PubMedGoogle Scholar
  28. 28.
    Koss, L.G., and G.R. Durfee, Unusual patterns of squamous epithelium of the uterine cervix: cytologic and pathologic study of koilocytotic atypia, Ann. New York Acad. Sci. 63:1245 (1956).CrossRefGoogle Scholar
  29. 29.
    Kovesdi, I., M. Satake, K. Furukawa, R. Reichel, Y. Ito, and J.R. Nevins, A factor discriminating between the wildtype and a mutant polyomavirus enhancer, Nature 328:87–89 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    Kreider, J.W., M.K. Howett, N.L. Lill, G.L. Bartlett, R.J. Zaino, T.V. Sedlacek, and R. Mortel, In vitro transformation of human skin with human papillomavirus type 11 from condylomata acuminata, J. Virol. 59:369–376 (1986).PubMedGoogle Scholar
  31. 31.
    Kreider, J.W., M.K. Howett, S.A. Wolfe, G.L. Bartlett, R.J. Zaino, T.V. Sedlacek, and R. Mortel, Morphological transformation of human uterine cervix with papillomavirus from condylomata acuminata, Nature. 317:639–640 (1985).PubMedCrossRefGoogle Scholar
  32. 32.
    Kryszke, M.H., P. Jacques, and M. Yaniv, Induction of a factor that binds to the polyomavirus A enhancer on differentiation of embryonal carcinoma cells, Nature. 328:254–256 (1987).PubMedCrossRefGoogle Scholar
  33. 33.
    Kurman, R.J., A.B. Jenson, and W.D. Lancaster, Papillomavirus infection of the cervix: 2. Relationship to intraepithelial neoplasia based on the presence of specific viral structural proteins, Am. J. Surg. Path. 7:39–52 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    Kurman, R.J., K.H. Shah, W.D. Lancaster, and A.B. Jenson, Immunoperox- idase localization of papillomavirus antigens in cervical dysplasia and vulvar condylomas, Am. J. Obstet. Gynecol. 140:931–935 (1981).PubMedGoogle Scholar
  35. 35.
    Lambert, P.F., B.A. Spalholz, and P.M. Howley, A transcriptional repressor encoded by BPV-1 shares a common carboxy-terminal domain with the E2 transactivator, Cell. 50:69–78 (1987).PubMedCrossRefGoogle Scholar
  36. 36.
    Lancaster, W.D., C. Castellano, C. Santos, G. Delgado, R.J. Kurman, and A.B. Jenson, Human papillomavirus deoxyribonucleic acid in cervical carcinoma from primary and metastatic sites, Am. J. Obstet. Gynecol. 154:115–119 (1986).PubMedGoogle Scholar
  37. 37.
    Lancaster, W.D., R.J. Kurman, L.E. Sang, S. Perry, and A.B. Jenson, Human papillomavirus: detection of viral DNA sequences and evidence for molecular heterogeneity in metaplasias and dysplasias of the uterine cervix, Intervirol. 20:202–212 (1983).CrossRefGoogle Scholar
  38. 38.
    Lehn, H., P. Krieg, and G. Sauer, Papillomavirus genomes in human cervical tumors: Analysis of their transcriptional activity, Proc. Natl. Acad. Sci. USA 82:5540–5544 (1985).PubMedCrossRefGoogle Scholar
  39. 39.
    Lorincz, A.T., W.D. Lancaster, and G.F. Temple, Cloning and characterization of the DNA of a new human papillomavirus from a woman with dysplasia of the uterine cervix, J. Virol. 58:225–229 (1986).PubMedGoogle Scholar
  40. 40.
    Lorincz, A.T., G.F. Temple, J.A. Patterson, A.B. Jenson, and W.D. Lancaster, Correlation of cellular atypia and human papillomavirus deoxyribonucleic acid sequences in exfoliated cells of the uterine cervix, Obstet. Gynecol. 68:508–512 (1986).Google Scholar
  41. 41.
    Lusky, M., and M.R. Botchan, Genetic analysis of bovine papillomavirus type 1 transacting replication factors, J. Virol. 53:955–965 (1985).PubMedGoogle Scholar
  42. 42.
    Lusky, M., and M.R. Botchan, Transient replication of bovine papillomavirus type 1 plasmids: cis and trans requirements, Proc. Natl. Acad. Sci. USA 83:3609–3613 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    Lyon, J., L. Rosl, and H. Zentgraf, Origin of replication in episomal bovine papillomavirus type 1 DNA isolated from transformed cells, EMBO J. 3:2173–2178 (1984).Google Scholar
  44. 44.
    Marmur, J., R. Rownd, and C.L. Schildkraut, Prog. Nucleic Acid Res. 1:231 (1963).CrossRefGoogle Scholar
  45. 45.
    Mathews, R.E., Classification and nomenclature of viruses, Intervirol. 17:1–199 (1982).CrossRefGoogle Scholar
  46. 46.
    Matsukura, T., T. Kanda, A. Furuno, H. Yoshikawa, T. Kawana, and K. Yoshike, Cloning of monomeric human papillomavirus type 16 DNA integreated within cell DNA from a cervical carcinoma, J. Virol. 58:979982 (1986).Google Scholar
  47. 47.
    Meisels, A., and R. Fortin, Condylomatous lesions of the cervix and vagina, I. Cytologic patterns, Acta. Cytol. 20:505–509 (1976).Google Scholar
  48. 48.
    Meisels, A., R. Fortin, and M. Roy, Condylomatous lesions of the cervis, II. Cytologic, colposcopic and histopathologic study, Acta. Cytol. 21:379–390 (1977).Google Scholar
  49. 49.
    Meisels, A., C. Morin, and M. Casas-Cordero, Human papillomavirus infection of the uterine cervix, Int. J. Gynecol. Path. 1:75–94 (1982).CrossRefGoogle Scholar
  50. 50.
    Ostrow, R.S., K.R. Zachow, and A.J. Faras, Molecular coning and nucleotide sequence analysis of several naturally occurring HPV-5 deletion mutant genomes, Virol. 158:235–238 (1987).CrossRefGoogle Scholar
  51. 51.
    Pater, M.M., and A. Pater, Human papillomavirus types 16 and 18 sequences in carcinoma cell lines, Virol. 145:313–318 (1985).CrossRefGoogle Scholar
  52. 52.
    Pfister, H., Biology and biochemistry of papillomaviruses, Rev. Physiol. Biochem. Pharmacol. 99:111–181 (1984).PubMedCrossRefGoogle Scholar
  53. 53.
    Rando, R.F., D.E. Groff, J.G. Chirikjian, and W.D. Lancaster, Isolation and characterization of a novel human papillomavirus type 6 DNA from an invasive vulvar carcinoma, J. Virol. 57:353–356 (1986).PubMedGoogle Scholar
  54. 54.
    Rando, R.F., T.V. Sedlacek, J. Hunt, A.B. Jenson, R.J. Kurman, and W.D. Lancaster, Verrucous carcinoma of the vulva associated with an unusual type 6 human papillomavirus, Obstet. and Gynecol. 67:70s-75s (1986).Google Scholar
  55. 55.
    Rando, R.F., W.D. Lancaster, P. Han, and C. Lopez, The noncoding region of HPV-6vc contains two distinct transcriptional enhancing elements, Virol. 155:545–556 (1986).CrossRefGoogle Scholar
  56. 56.
    Rando, R.F., Naturally occuring deletion mutants of HPV-16 isolated from a precancerous vaginal lesion, Virol. submitted (1987).Google Scholar
  57. 57.
    Reid, R., M. Greenberg, A.B. Jenson, M. Husain, J. Willett, Y. Daoud, G. Temple, and A.T. Lorincz, Sexually transmitted paillomaviral infections. I. The anatomic distribution and pathologic grad of neoplastic lesions associated with different viral types, Am. J. Obstet. Gynecol. 156:212–222 (1987).Google Scholar
  58. 58.
    Reid, R., C.R. Laverty, M. Coppleson, W. Isarangkul, and E. Hills, Noncondylomatous cervical wart virus infection, Obstet. Gynecol. 55: 476–483 (1980).Google Scholar
  59. 59.
    Rowson, K.E.K., and B.W.J. Mahy, Humanpapova (wart) virus, Bacteriol. Rev. 31:100 (1967).Google Scholar
  60. 60.
    Sanger, F., and A.R. Coulson, A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase, J. Mol. Biol. 94:441–448 (1975).Google Scholar
  61. 61.
    Sarver, N., M.S. Rabson, Y.C. Yang, J.C. Byrne, and P.M. Howley, Localization and analysis of bovine papillomavirus type 1 transforming functions, J. Virol. 52:377–388 (1984).PubMedGoogle Scholar
  62. 62.
    Schiller, J.T., W.C. Vass, and D.R. Lowry, Identification of a second transforming region in bovine papillomavirus DNA, Proc. Natl. Acad. Sci. USA 81:7880–7884 (1984).PubMedCrossRefGoogle Scholar
  63. 63.
    Schiller, J.T., W.C. Vass, K.H. Vousdan, and D.R. Lowy, The E5 open reading frame of bovine papillomavirus type 1 encodes a transforming gene, J. Virol. 57:1–6 (1986).PubMedGoogle Scholar
  64. 64.
    Schwarz, E., U.K. Freese, L. Gissmann, W. Mayer, B. Roggenbuck, A. Stremlau, and H. zur Hausen, Structure and transcription of human papillomavirus sequences in cervical carcinoma cells, Nature. 314: 111–114 (1985).PubMedCrossRefGoogle Scholar
  65. 65.
    Smotkin, D., and F.O. Wettstein, The major human papillomavirus protein in cervical cancers is a cytoplasmic phosphoprotein, J. Virol. 61:1686–1689 (1987).Google Scholar
  66. 66.
    Southern, E.M., Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98:503–517 (1975).PubMedCrossRefGoogle Scholar
  67. 67.
    Spalholz, B.A., Y.C. Yang, and P.M. Howley, Transactivation of a bovine papillomavirus transcriptional regulatory element by the E2 gene product, Cell. 42:183–191 (1985).PubMedCrossRefGoogle Scholar
  68. 68.
    Stoler, M.H., and T.R. Broker, In situ hybridization detection of human papillomavirus DNA and messenger RNA in genital condylomas and a cervical carcinoma, Hum. Path. 17:1250–1258 (1986).Google Scholar
  69. 69.
    Toon, P.G., J.R. Arrand, L.P. Wilson, and D.S. Sharp, Human papillomavirus infection of the uterine cervix of women without cytological signs of neoplasia, Br. Med. J. 293:1261–1264 (1986).CrossRefGoogle Scholar
  70. 70.
    Tsunokawa, Y., N. Takebe, S. Nozawa, T. Kasamatsu, L. Gissman, H. zur Hausen, M. Terada, and T. Sugimura, Presence of human papillomavirus type-16 and type-18 DNA sequences and their expression in cervical cancers and cell lines from Japanese patients, Int. J. Cancer. 37:499–503 (1986).PubMedCrossRefGoogle Scholar
  71. 71.
    Wagner, D., H. Ikenberg, N. Boehm, and L. Gissmann, Identification of human papillomavirus in cervical swabs by deoxyribonucleic acid in situ hybridization, Obstet. Gynecol. 64:767–772 (1984).Google Scholar
  72. 72.
    Wettstein, F.O., and J.G. Stevens, Variable-sized free episomes of shope papillomavirus DNA are present in all non-virus producing neoplasms and integrated episomes are detected in some, Proc. Natl. Acad. Sci. USA 79:790–794 (1982).PubMedCrossRefGoogle Scholar
  73. 73.
    Wickenden, C., A.D. Malcolm, A. Steele, and D.V. Coleman, Screening for wart virus infection in normal and abnormal cervices by DNA hybridization of cervical scrapes, Lancet. 1:65–67 (1985).PubMedCrossRefGoogle Scholar
  74. 74.
    Winkler, B., V. Capa, W. Reumann, A. Ma, R. La Porta, S. Reilly, P.M. Green, R.M. Richart, and C.P. Crum, Human papillomavirus infection of the esophagus. A clinicopathologic study with demonstration of papillomaviurs antigen by the immunoperoxidase technique, Cancer. 55:149–155 (1985).PubMedCrossRefGoogle Scholar
  75. 75.
    Yang, Y.C., B.A. Spalholz, M.S. Rabson, and P.M. Howley, Dissociation of transforming and trans-activation functions for bovine papillomavirus type 1, Nature. 318:575–577 (1985).PubMedCrossRefGoogle Scholar
  76. 76.
    Yee, C., I. Krishnan-Hewlett, C.C. Baker, R. Schlegel, and P.M. Howley, Presence and expression of HPV sequences in human cervical carcinoma cell lines, Am. J. Path. 119:361–366 (1985).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Robert F. Rando
    • 1
  1. 1.Departments of Pathology and OB/GYNPennsylvania HospitalPhiladelphiaUSA

Personalised recommendations