Influence of Nucleic Acid on Racemisation of Peptide Synthesis by Water Soluble Carbodiimide and its Relevance to the Origin of Genetic Code

  • S. K. Podder
  • H. S. Basu


To understand the principle of complementarity in protein nucleic acid interaction as well as its manifestations in the organization of nucleoprotein complexes and the control of gene regulation and expression is a key problem in the present day of molecular biology(1). It is probably important in understanding chemical evolution of life based on coupling between proteins and nucleic acids and as well as near universal condon-amino acid relationship. The template directed polymerization of nucleic acids and of amino acids is the key element in contemporary living systems. The rules that govern self recognition of nucleic acid are simple but uniquely defined by the rules of complementarity in the interaction of purines and pyrimidines for base pairing. It is also manifested in template directed in enzymatic (ie replication and transcription) and nonenzymatic polymerization of nucleic acids(2–4). Enzymes are involved only in kinetic control. In contrast nucleic acid directed condensation of amino acids takes place via t-RNA and involves condon-anticodon specificity; the error free incorporation of L-amino acids is rather kinectically controlled(5). Thus it does not give us any clue as to how the intricate machinery of protein synthesis evolved from prebiotic soup containing amino acids/dipeptides, and mononucliotides, whose synthesis are shown to be feasible under prebiotic conditions.


Relative Enhancement Anticodon Loop Site Binding Model Double Stranded Nucleic Acid Prebiotic Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Von Hippel, P(1984) Ann Rev. Biochem 53, 389.CrossRefGoogle Scholar
  2. 2.
    Perutska, J. et. al (1988) Proc. Natl Acad. Sci. 85, 6252.CrossRefGoogle Scholar
  3. 3.
    Joyce J. and Orgel L. (1988) J. Mol. Biol 202, 607.CrossRefGoogle Scholar
  4. 4.
    Joyce J.F. et al (1987) Proc. Natl. Acad. Sci. 84, 4398.CrossRefGoogle Scholar
  5. 5.
    Laccy, J. C., Jr. (1988) Proc. Natl. Acad. Sci. 85, 4996.CrossRefGoogle Scholar
  6. 6.
    Orgel, L.E. (1986) J. Theo Biol. 123, 127.CrossRefGoogle Scholar
  7. 7.
    Dounce, A. L. (1981) J. Theo, Biol 90, 63.CrossRefGoogle Scholar
  8. 8.
    Joyce, G. F. (1989) Nature, 338, 217.PubMedCrossRefGoogle Scholar
  9. 9.
    Lacey, J.C. Jr. and Mullins D.W. Jr. (1983) Origins of life, 13, 3.PubMedCrossRefGoogle Scholar
  10. 10.
    Helene, C. and Maurizot, J (1981) C.R. C. Critical Review in Biochemsitry, 10, 213.CrossRefGoogle Scholar
  11. 11.
    Takada, Y. et al (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 439.CrossRefGoogle Scholar
  12. 12.
    Helene, C. and Lancelot, G. (1983) Prog. Biophys and Mol. Biol. 39, 1.CrossRefGoogle Scholar
  13. 13.
    Ballard, D.G.H. and Bamford, C.H. (1956) Proc, Roy Soc.(London) 236A. 384.CrossRefGoogle Scholar
  14. 14.
    Bayer, E. et al (1974) J. Am. Chem. Soc. 96, 7333.PubMedCrossRefGoogle Scholar
  15. 15.
    Chella, G. and Tan, Y.Y. (1981) Pure and Appl. Chem 53, 627.CrossRefGoogle Scholar
  16. 16.
    Steinmann, G. And Cole, M.N. (1968) Fed. Proc. 27, 765.Google Scholar
  17. 17.
    Thomas, P.D. and Podder, S.K. (1978) Febs Letter 96, 90.CrossRefGoogle Scholar
  18. 18.
    Reuben, J. and Polk, F. (1980) J. Mol evolution, 15, 103.CrossRefGoogle Scholar
  19. 19.
    Khaled, M.A. et al. (1982) Biochem, Biophy Res. Comp. 106, 1426CrossRefGoogle Scholar
  20. 20.
    Das Gupta D. and Podder, S.K. (1979) Ind. J. Biochem. Biophy. 16, 316.Google Scholar
  21. 21.
    S.K. Podder and Dasgupta, D. (1980) Ind. J. Biochem Biophy, 17, 417.Google Scholar
  22. 22.
    Das Gupta, D. (1979) Ph.D thesis, Indian Institute of Science, Bangalore, India.Google Scholar
  23. 23.
    Poerschke, D. and Jung, M. (1982) Nuc. Acid Res. 10, 6163.CrossRefGoogle Scholar
  24. 24.
    McGhee, Z.D. (1976) Biopolymers 15, 1345.PubMedCrossRefGoogle Scholar
  25. 25.
    Podder, S.K. and Basu, H. S. (1984) Origins of life 14, 477.PubMedCrossRefGoogle Scholar
  26. 26.
    Gross, E. and Meinhoffer, J. (1979) in the Peptides (Gross E and Meinhoffer, J. ed, Acad. Press ) 1, 44.Google Scholar
  27. 27.
    Hoare, D.G. and Koshland, Jr. D.E. (1967), J. Biol. Chem. 242, 2447PubMedGoogle Scholar
  28. 28.
    Basu, H.S. and Podder, S.K. (1982) Ind. J. Biochem & Biophys. 19, 305.Google Scholar
  29. 29.
    Benoiten, N.L. etc. (1980) Int. J. Pep. Prot. Res. 15, 475.CrossRefGoogle Scholar
  30. 30.
    Bjornson et al (1974) in the origin of life and evolutionary Biochemistry (Dose K. Fox, S.W. et al) Plenum Press, N.Y.) 21.Google Scholar
  31. 31.
    Steinmann G. and Cole, M.N. (1968) Proc. Natl. Acad. Sci. ( U.S. ) 58, 735.CrossRefGoogle Scholar
  32. 32.
    White, D. H. and Erickson, J.C. (1981) J. Mol. Evolution 17, 19CrossRefGoogle Scholar
  33. 33.
    Schimmel,..P. (1989) Biochemistry, 26, 2747CrossRefGoogle Scholar
  34. 34.
    Kisseley, L.E. (1985) Prog. in Nucleic Acid Research and Molecular Biol. 32, 237.Google Scholar
  35. 35.
    Shimizu, M. (1982) J. Mol evolution 18, 297.CrossRefGoogle Scholar
  36. 36.
    R. Balasubramanian (1982) TIBS. 7, 9.Google Scholar
  37. 37.
    Eigen, M. (1971) Naturwiss 58, 465.PubMedCrossRefGoogle Scholar
  38. 38.
    Eigen, M. et al (1989) Science 244, 673.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • S. K. Podder
    • 1
    • 2
  • H. S. Basu
    • 1
    • 3
  1. 1.Department of BiochemistryIndian Institute of ScienceBangaloreIndia
  2. 2.Laboratory of Mathematical BiologyNCI-FCRFFrederickUSA
  3. 3.Brain Tumor Research CenterUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations