Skip to main content

Nonlocality and Symmetry in Quantum Mechanics versus Localizability and Symmetry-Breaking In Protobiology

  • Chapter
Symmetries in Science IV

Abstract

Nonlocal characteristic of quantum mechanics as demonstrated in a simultaneous correlation of polarized particles at different spatial locations1) suggests that simultaneous specifiability of nonlocal boundary conditions serves as a good approximation to reality2). The quantum mechanical equation of motion of the wavefunction preserves the symmetry property observed within the nonlocal boundary conditions. However, nothing propagates at superluminal velocities as Bell’s inequalities would imply3). One thus observes that if boundary conditions are claimed to be completely and globally specifiable in a simultaneous manner, something would have to be propagated at an infinite velocity in order to guarantee the claimed global specifiability that is of course nonlocal. On the other hand, if simultaneous specifiability of nonlocal boundary conditions is abandoned as it should be and if the locality implying that nothing propagates at superluminal velocities is correctly observed boundary conditions would have to become necessarily vague and indefinite4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aspect, A., Grangier, P., and Roger, G., 1981. Experimental tests of realistic local thories via Bell’s theorem, Phys. Rev. Lett. 47, 460.

    Article  CAS  Google Scholar 

  2. Matsuno, K., 1989. Nonlocality and localizability in quantum mechanics, Ann.Fond.Louis de Broglie 14, 233.

    Google Scholar 

  3. Bell, J. S., 1989. Speakable and Unspeakable in Quantum Mechanics 1987. (Cambridge University Press, London).

    Google Scholar 

  4. Matsuno, K., 1989. Protobiology: Physical Basis of Biology (CRC Press, Boca Raton, Florida).

    Google Scholar 

  5. Aspect, A., and Grangier, P., 1983. Experiment on Einstein-Podolsky-Rosen type correlations with pairs of visible photons, in Proc. Int. Symp. on Foundation of Quantum Mechanics, Kamefuchi, S., et al Eds. (Phys. Soc. Japan, Tokyo), p. 214.

    Google Scholar 

  6. Matsuno, K., 1985. How can quantum mechanics of material evolution be possible?: symmetry and symmetry-breaking in protobiological evolution, BioSystems 17, 179.

    Article  PubMed  CAS  Google Scholar 

  7. Conrad, M., 1983. Adaptability: The Significance of Variability from Molecule to Ecosystem (Plenum, New York), chap. 2.

    Google Scholar 

  8. Lochak, G., 1981. Irreversibility in physics: reflections on the evolution of ideas in mechanics and the actual crisis in physics, Found. Phys. 11, 593.

    Article  Google Scholar 

  9. Mehlberg, H., 1980. Time, Causality, and the Quantum Theory, Vol.1 (D. Reidel, Boston), chaps. 7 and 9.

    Google Scholar 

  10. Slack, J. M. W., 1983. From Egg to Embryo: Determinative Events in Early Development (Cambridge University Press, Cambridge) chaps. 1 and 2.

    Google Scholar 

  11. Watanabe, S., 1966. Time and the probabilistic view of the world, in The Voices of Time, Fraser, J. T., Ed. (Braziller, New York) p. 527.

    Google Scholar 

  12. Denbigh, K. G., 1981. Three Concepts of Time (Springer-Verlag, Berlin), chaps. 6, 7 and 8.

    Google Scholar 

  13. Schulman, L. S., 1986. Deterministic quantum evolution through modification of the hypotheses of statistical mechanics, J. Stat. Phys. 42, 689

    Article  Google Scholar 

  14. Wheeler, J. A., and Feynman, R. P., 1949. Classical electrodynamics in terms of direct interparticle action, Rev. Mod. Phys. 21, 425.

    Article  Google Scholar 

  15. Matsuno, K., 1984. Determinism and freedom in early evolution, in Individuality and Determinism: Chemical and Biological Bases, Fox, S. W., Ed. (Plenum, New York), p. 203.

    Google Scholar 

  16. Matsuno, K., 1984. Is matter inanimate: protobiological information from within, Origins Life 14, 489.

    Article  CAS  Google Scholar 

  17. Miller, S. and Orgel, L. E., 1974. The Origin of Life on the Earth (Prentice-Hall, Englewood Cliffs, New Jersey).

    Google Scholar 

  18. Fox, S. W., 1988. The Emergence of Life: Darwinian Evolution from the Inside (Basic Books, New York).

    Google Scholar 

  19. Courbage, M., and Prigogine, I., 1983. Intrinsic randomness and intrinsic irreversibility in classical dynamical systems, Proc. Natl. Acad. Sci. USA 80, 2412.

    Article  PubMed  CAS  Google Scholar 

  20. Anderson, P. W., 1983, Suggested model for prebiotic evolution: The use of chaos, Proc. Natl. Acad. Sci. USA 80, 3386.

    Article  PubMed  CAS  Google Scholar 

  21. Stein, L. D., 1984. A model for the origin of biological information, Int. J. Quant. Chem. QBS-11, 73.

    Article  Google Scholar 

  22. Vrba, E. S., and Eldredge, N., 1984. Individuals, hierarchies and processes: towards a more complete evolutionary theory, Paleobiology 19, 146.

    Google Scholar 

  23. Bernstein, H., Byerly, H. C., Hopf, F., Michod, R. A., and Vemulapalli, G. K., 1983. The Darwinian dynamic, Quart. Rev. Biol. 58, 185.

    Article  Google Scholar 

  24. Goodwin, B. C., 1984. A relational or field theory of reproduction and its evolutionary implications, in Beyond Neo-Darwinism, Ho, M. W., and Saunders, P. T., Eds. (Academic Press, London), p. 219.

    Google Scholar 

  25. Matsuno, K., 1984. Open systems and the origin of protoreproductive units, in Beyond Neo-Darwimism, Ho, M. W., and Saunders, P. T., Eds. (Academic Press, London), p. 61.

    Google Scholar 

  26. Lohrmann, R., Bridson, P. K., and Orgel, L. E., 1980. Efficient metal-ion catalyzed template-direct oligonucleotide synthesis, Science 208, 1464.

    Article  PubMed  CAS  Google Scholar 

  27. Biebricher, C. K., 1983. Darwinian selection of self-replicating RNA molecules, in Evolutionary Biology, Vol. 16, Hechet, M. K., Wallace, B., and Prance, C. T., Eds. (Plenum, New York), p. 1.

    Google Scholar 

  28. Eigen, M., and Schuster, P., 1982. Stages of emergence of life - five principles of early evolution, J. Mol. Evol. 19, 47.

    Article  PubMed  CAS  Google Scholar 

  29. Morowitz, H., 1978. Foundations of Bioenergetics (Academic Press, New York).

    Google Scholar 

  30. Koch, A. L., 1985. Primeval cell: possible energy-generating and cell-division mechanisms, J. Mol. Evol. 21, 270.

    Article  CAS  Google Scholar 

  31. Douglas, J., 1984. Hypothetical entropy-driven mechanism for self-regulation of the size and division of primitive cells suggesting the origin and nature of mesosomes, J. Theor. Biol. 109, 475.

    Article  PubMed  CAS  Google Scholar 

  32. Deamer, D. W., and Oro, J., 1980. Role of lipids in prebiotic structures, BioSystems 12, 167.

    Article  PubMed  CAS  Google Scholar 

  33. Pattee, H. H., 1979. The complementarity principle and the origin of macromolecular information, BioSystems 11, 259.

    Article  Google Scholar 

  34. Weiss, A., 1981; Replication and evolution in inorganic systems, Angew. Chem. Int. Ed. Engl. 20, 850.

    Google Scholar 

  35. Rosen, R., 1985. The physics of complexity, Syst. Res. 2, 171.

    Article  Google Scholar 

  36. Mayr, E., 1980. Prologue: some thoughts on the history of the evolutionary synthesis, in The Evolutionary Synthesis, Mayr, E., and Provine, W. B., Eds. (Harvard University Press, Cambridge), p. 1.

    Google Scholar 

  37. Pullman, A., and Pullman, B., 1981. in Chemical Applications of Atomic and Molecular Electrostatic Potentials, Politzer, P., and Truhiar, D. G., Eds. (Plenum, New York), p. 381.

    Google Scholar 

  38. Goodman, M., 1981. Decoding the pattern of protein evolution, Progr. Biophys. Molec. Biol. 37, 105.

    Article  Google Scholar 

  39. Ayala, F. J., 1986. On the virtues and pitfalls of the molecular evolutionary clock, J. Hered. 77, 226.

    PubMed  CAS  Google Scholar 

  40. Odum, E. P., 1971. Fundamentals of Ecology, 3rd Ed. (Saunders, W. B., Philadelphia).

    Google Scholar 

  41. Matsuno, K., 1989. Cell motility: an interplay between local and nonlocal measurement, BioSystems 22, 117.

    Article  PubMed  CAS  Google Scholar 

  42. Hiramoto, Y., and Baba, S. A., 1978. A quantitative analysis of flagellar movement in echinoderm spermatozoa, J. Exp. Biol. 76, 85.

    Google Scholar 

  43. Harada, Y., Noguchi, A., Kishino, A., and Yanagida, T., 1987. Sliding movement of single actin filamerts on one-headed myosin filaments, Nature 326, 805.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Matsuno, K. (1990). Nonlocality and Symmetry in Quantum Mechanics versus Localizability and Symmetry-Breaking In Protobiology. In: Gruber, B., Yopp, J.H. (eds) Symmetries in Science IV. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0597-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0597-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7884-9

  • Online ISBN: 978-1-4613-0597-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics