Advertisement

Gene Structure and Function of Thermophilic ATP Synthase

  • Yasuo Kagawa
  • Shigeo Ohta
  • Masafumi Yohda
  • Hajime Hirata
  • Toshiro Hamamoto
  • Kakuko Matsuda

Abstract

An operon for thermophilic ATP synthase (TF0F1)was sequenced and mutated. The advantage of using TF0F1 for mechanistic studies is its reconstitutability without MgATP. All genes for TF0F1 were arranged in the order of promotors, structural genes coding for the I, TF0 subunits (a, c, b) and TF1 subunits (δ, α, γ, β and ε), and a terminator. The cause of the stability of these subunits was deduced from their sequence. The site-directed mutagenesis of the α and β subunits revealed that the 4 ionizable residues corresponding to Lys 21 and Asp 119 in the MgATP binding segments of adenylate kinase, are essential for the normal catalytic activity of this enzyme. The resulting βI164 and βN252 mutant subunits were both noncatalytic after reassembly into the αβγ subunit complex, even though both subunits bound significant amounts of ADP. The resulting αI175 reassembled weakly into an oligomer, while the αN261 was reconstituted into an αβγ subunit complex that showed no intersubunit cooperativity.

Keywords

None None Adenylate Kinase Ionizable Residue Jichi Medical School Mutant Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cozens, A.L. and Walker, J.E. (1987) J. Moi Biol. 194, 359–383.CrossRefGoogle Scholar
  2. Davis, L.G., Dibner, M.D., and Battey, J.F. (1986) Basic Methods in Molecular Biology, Elsevier, Amsterdam.Google Scholar
  3. Dunn, S.D. and Futai, M. (1980) J. Biol. Chem. 255,113–118.PubMedGoogle Scholar
  4. Fry, D.C., Kuby, S.A. and Mildvan, A.S. (1986) Proc. Natl. Acad. Sci. USA 83, 907–911.PubMedCrossRefGoogle Scholar
  5. Futai, M., and Kanazawa, H. (1983) Microbiol. Rev. 47,258–312.Google Scholar
  6. Gay, N.J. and Walker, J.E. (1981) Nucleic Acids Res. 9, 3919–3926.PubMedCrossRefGoogle Scholar
  7. Hirata, H., Ohno, K., Sone, N., Kagawa, Y. and Hamamoto, T. (1986) J. Biol. Chem. 261, 9839–9843.PubMedGoogle Scholar
  8. Hisabori, T., Yoshida, M., and Sakurai, H. (1986) J. Biochem. 100,663–670.PubMedGoogle Scholar
  9. Kagawa, Y. (1984) in Bioenergetics (Ernster, L. Ed.) pp. 149–186, Elsevier, Amsterdam.Google Scholar
  10. Kagawa, Y., Hirata, H., Ohta, S., Ishizuka, M. and Karube, Y. (1987) in Ion Transport through Membranes (Yagi, K. and Pullman, B. Eds.) pp. 147–162, Academic Press, New York.Google Scholar
  11. Kagawa, Y., Ishizuka, M., Saishu, T., and Nakao, J. (1986) J. Biochem. 100, 923–934.PubMedGoogle Scholar
  12. Kagawa, Y., Nojima, H., Nukiwa, N., Ishizuka, M., Nakajima, T., Yasuhara, T., Tanaka, T. and Oshima, T. (1984) J. Biol. Chem. 259, 2956–2960.PubMedGoogle Scholar
  13. Kagawa, Y. and Yoshida, M. (1979) Methods Enzymol. 55,781–787.PubMedCrossRefGoogle Scholar
  14. Mitchell, P. (1961) Nature 191, 144–148.PubMedCrossRefGoogle Scholar
  15. Saishu, T., Nojima, H. and Kagawa, Y. (1986) Biochim. Biophys. Acta 867, 97–106.PubMedGoogle Scholar
  16. Senter, P., Eckstein, F., and Kagawa, Y. (1983) Biochemistry 22, 5514–5518.CrossRefGoogle Scholar
  17. Yohda, M., Kagawa, Y., and Yoshida, M. (1986) Biochim. Biophys. Acta 850, 429–435.CrossRefGoogle Scholar
  18. Yoshida, M., Sone, N., Hirata, H., and Kagawa, Y. (1977) J. Biol. Chem. 252, 3480–3485.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Yasuo Kagawa
    • 1
  • Shigeo Ohta
    • 1
  • Masafumi Yohda
    • 1
  • Hajime Hirata
    • 1
  • Toshiro Hamamoto
    • 1
  • Kakuko Matsuda
    • 1
  1. 1.Department of BiochemistryJichi Medical School Minamikawachi-machiTochigi-kenJapan

Personalised recommendations