Advertisement

Fluid and Electrolyte Balance and Hormonal Response to the Hypoxic Environment

  • John R. Claybaugh
  • Charles E. Wade
  • Samuel A. Cucinell

Abstract

The effect of the hypoxic environment on body fluid regulating systems is influenced by both the direct and indirect effects of hypoxia. Regarding the direct physiological effects, for instance, hypoxemia can directly stimulate the carotid body chemoreceptors with subsequent stimulation of antidiuretic hormone (ADH) release (79), and by mechanisms still unclear, hypoxia reduces the secretion of aldosterone (15,16,39,57,62,81,84,85). In the natural setting, coincident environmental factors such as cold and exercise, discussed elsewhere in this text, and possibly hypobaria, may influence the responses to hypoxia. Additionally, the indirect effects of short-term hypoxia on respiration and cardiovascular reflexes also effect water and electrolyte regulating hormones, and the longer-term effects of decreased appetite impact on electrolyte balances which cause compensatory responses of these hormone systems. Finally, there are the poorly understood indirect consequences of “stress” on various hormonal systems, particularly those of ADH and glucocorticoids, that cannot be excluded from the mechanisms of hypoxia-induced effects on these systems.

Keywords

High Altitude Urine Flow Total Body Water Atrial Natriuretic Factor Severe Hypoxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1..
    Anderson, R.J., R.G. Pluss, A.S. Berns, J.T. Jackson, P.E. Arnold, R.W. Schrier and K.M. McDonald. Mechanism of effect of hypoxia on renal water excretion. J. Clin. Invest. 62: 769–776, 1978.PubMedCrossRefGoogle Scholar
  2. 2..
    Armstrong, H.G. Principles and Practice of Aviation Medicine. Chapter 18, Chronic Altitude Sickness. The Williams and Wilkins Co., Baltimore, pp 284–286, 1939.Google Scholar
  3. 3..
    Arregui, A., G.R. Barer and P.C. Emson. Neurochemical studies in the hypoxic brain: substance P, met-enkephalin, GABA, and angiotensin converting enzyme. Life Sci. 28: 2925–2929, 1981.PubMedCrossRefGoogle Scholar
  4. 4..
    Ashack, R., M.O. Farber, M.H. Weinberger, G.L. Robertson, N.S. Fineberg and F. Manfredi. Renal and hormonal responses to acute hypoxia in normal individuals. J. Lab. Clin. Med. 106: 12–16, 1985.PubMedGoogle Scholar
  5. 5..
    Baertschi, A.J., C. Hausmaninger, R.S. Walsh, R.M. Mentzer, D.A. Wyatt and R.A. Pence. Hypoxia-induced release of atrial natriuretic factor (ANF) from the isolated rat and rabbit heart. Biochem. Biophys. Res. Comm. 140: 427–433, 1986.PubMedCrossRefGoogle Scholar
  6. 6..
    Blum, J.W., W. Biancha, F. Naf, P. Kunz, J.A. Fischer and M. DaPrada. Plasma catecholamine and parathyroid hormone responses in cattle during treadmill exercise at simulated high altitude. Horm. Metab. Res. 11: 246–251, 1979.PubMedCrossRefGoogle Scholar
  7. 7..
    Blume, F.D., S.J. Boyer, L.E. Braverman, A. Cohen, J. Dirkse and J.P. Mordes. Impaired osmoregulation at high altitude. JAMA 252: 524–526, 1984.PubMedCrossRefGoogle Scholar
  8. 8..
    Brahmachari, H.D., M.S. Malhotra, K. Ramachandran and U. Radhakrishnan. Progressive changes in plasma cortisol, antidiuretic hormone and urinary volume of normal lowlanders during short stay at high altitude. Indian J. Exp. Biol. 11: 454–455, 1973.Google Scholar
  9. 9..
    Brands, M.W. and R.H. Freeman. Aldosterone and renin inhibition by physiological levels of atrial natriuretic factor. Am J. Physiol. 254(Regulatory Integrative Comp. Physiol. 23 ): R1011 - R1016, 1988.Google Scholar
  10. 10..
    Burrill, M.W., S. Freeman and A.C. Ivy. Sodium, potassium and chloride excretion of human subjects exposed to a simulated altitude of eighteen thousand feet. J. Biol. Chem. 157: 297–302, 1945.Google Scholar
  11. 11..
    Chatterji, J.C., V.C. Ohri, K.S. Chadha, B.K. Das, M. Akhtar, S.C. Tewari, P. Bhattacharji and A. Wadhwa. Serum and urinary cation changes on acute induction to high altitude (3200 and 3771 meters). Aviat. Space Environ. Med. 53: 576–579, 1982.Google Scholar
  12. 12..
    Claybaugh, J.R., J.E. Hansen and D.B. Wozniak. Response of antidiuretic hormone to acute exposure to mild and severe hypoxia in man. J. Endocrinol. 77: 157–160, 1978.PubMedCrossRefGoogle Scholar
  13. 13..
    Claybaugh, J.R., C.E. Wade, A.K. Sato, S.A. Cucinell, J.C. Lane and J.T. Maher. Antidiuretic hormone responses to eucapnic and hypocapnic hypoxia in humans. J. Appl. Physiol. 53: 815–823, 1982.PubMedGoogle Scholar
  14. 14..
    Claybaugh, J.R., W.K. Stokes, B.J. Freund and G.H. Bryant. Plasma vasopressin is increased only during the first two of six hours of severe hypoxia in conscious goats. Fed. Proc. 46: 796 (abstract 2804), 1987.Google Scholar
  15. 15..
    Colice, G.L. and G. Ramirez. Effect of hypoxemia on the renin-angiotensinaldosterone system in humans. J. Appl. Physiol. 58: 724–730, 1985.Google Scholar
  16. 16..
    Colice, G.L. and G. Ramirez. Aldosterone response to angiotensin II during hypoxemia. J. Appl. Physiol. 61: 150–154, 1986.PubMedGoogle Scholar
  17. 17..
    Consolazio, C.F., H.L. Johnson, H.J. Krzywicki and T.A. Daws. Metabolic aspects of acute altitude exposure (4,300 meters) in adequately nourished humans. Am. J. Clin. Nutr. 25: 23–29, 1972.PubMedGoogle Scholar
  18. 18..
    Consolazio, C.F., L.O. Matoush, H.L. Johnson and T.A. Daws. Protein and water balances of young adults during prolonged exposure to high altitude (4300 meters). Am. J. Clin. Nutr. 21: 154–161, 1968.Google Scholar
  19. 19..
    Currie, J.C.M. and E. Ullmann. Polyuria during experimnetal modifications of breathing. J. Physiol. 155: 438–455, 1961.PubMedGoogle Scholar
  20. 20..
    Daniel, S.S., R.I. Stark, A.B. Zubrow, H.E. Fox, M.K. Husain and L.S. James. Factors in the release of vasopressin by the hypoxic fetus. Endocrinology 113: 1623–1628, 1983.PubMedCrossRefGoogle Scholar
  21. 21..
    deBold, A.J., H.B. Borenstein, A.T. Veress and H. Sonenberg. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rat. Life Science 28: 89–94, 1981.CrossRefGoogle Scholar
  22. 22..
    du Souich,P., C. Saunier, D. Hartman, A. Sautegeau, H. Ong, P. Larose and R. Babin. Effect of moderate hypoxemia on atrial natriuretic factor and arginine vasopressin in normal man. Biochem. Biophys. Res. Comm. 148: 906–912, 1987.PubMedCrossRefGoogle Scholar
  23. 23..
    Epstein, M. and T. Saruta. Effects of simulated high altitude on reninaldosterone and Na homeostasis in normal man. J. Appl. Physiol. 33: 204–210, 1972.PubMedGoogle Scholar
  24. 24..
    Forsling, M.L. D.L. Ingram and M.W. Stanier. Plasma antidiuretic hormone during hypoxia and anesthesia in pigs. J. Endocrinol. 85: 253–259, 1980.PubMedCrossRefGoogle Scholar
  25. 25..
    Forsling, M.L. and J.S. Milledge. Effect of hypoxia on vasopressin release in man. J. Physiol. 267: 22P - 23P, 1977.PubMedGoogle Scholar
  26. 26..
    Forsling, M. L. and E. Ullman. Release of vasopressin during hypoxia. J. Physiol. 241: 35P - 36P, 1974.PubMedGoogle Scholar
  27. 27..
    Frayser, R., I.D. Rennie, G.W. Gray and C.S. Houston. Hormonal and electrolyte response to exposure to 17,500 ft. J. Appl. Physiol. 38: 636–642, 1975.PubMedGoogle Scholar
  28. 28..
    Gould, A.B. and S.A. Goodman. Effect of hypoxia on the rennin angiotensinogen system. Lab. Invest. 22: 443–447, 1970.PubMedGoogle Scholar
  29. 29..
    Guiol, C., P. Montastruc and M-C. Prevost. Renal effect of acute hypobaric pressure breathing in normal and diabetes insipitus rats. J. Physiol. Paris 81: 41–44, 1986.PubMedGoogle Scholar
  30. 30..
    Hackett, P.H., M.L. Forsling, J. Milledge and D. Rennie. Release of vasopressin in man at altitude. Horm. Metab. Res. 10: 571, 1978.CrossRefGoogle Scholar
  31. 31..
    Hannon, J.P. Comparative altitude adaptability of young men and women. In: Environmental Stress: Individual Human Adaptations, eds. L.J. Folinsbee, J.A. Wagner, J.F. Borgia, B.L. Drinkwater, J.A. Gliner and J.F. Bedi. Academic Press, New York, pp. 335–350, 1978.Google Scholar
  32. 32..
    Hannon, J.P. Nutrition at High Altitude. In: Environmental Physiology: Aging, Heat and Altitude, eds. S.M. Horvath and M.K. Yousef. New York, Elsevier/ North Holland, pp 309–327, 1981.Google Scholar
  33. 33..
    Hannon, J.P., K.S.K. Chinn and J.L. Shields. Effects of acute high-altitude exposure on body fluids. Fed. Proc. 28: 1178–1184, 1969.PubMedGoogle Scholar
  34. 34..
    Hannon, J.P., K.S.K. Chinn and J.L. Shields. Alterations in serum and extracellular electrolytes during high-altitude exposure. J. Appl. Physiol. 31: 266–273, 1971.PubMedGoogle Scholar
  35. 35..
    Hannon, J.P., L.F. Krabill, T.A. Woolridge and D.D. Schnakenberg. Effects of high altitude and hypophagia on mineral metabolism of rats. J. Nutr. 105: 278–287, 1975.PubMedGoogle Scholar
  36. 36..
    Harber, M.J., J.D. Williams and J.J. Morton. Antidiuretic hormone excretion at high altitude. Aviat. Space Environ, Med. 52: 38–40, 1981.Google Scholar
  37. 37..
    Heyes, M.P., M.O. Farber, F. Manfredi, D. Robertshaw, M. Weinberger, N. Fineberg and G. Robertson. Acute effects of hypoxia on renal and endocrine function in normal humans. Am. J. Physiol. 243 (Regulatory Integrative Comp. Physiol. 12): R265 - R270, 1982.PubMedGoogle Scholar
  38. 38..
    Hill, N.S. and L-C. Ou. The possible role of atrial natriuretic factor in modulating the pulmonary hypertensinve response to hypoxia. Chest 93 (3 suppl): 95S - 96S, 1988.PubMedCrossRefGoogle Scholar
  39. 39..
    Hogan, R.P., T.A. Kotchen, A.E. Boyd and L.H. Hartley. Effect of altitude on renin-aldosterone system and metabolism of water and electrolytes. J. Appl. Physiol. 35: 385–390, 1973.PubMedGoogle Scholar
  40. 40..
    Humpeler, E., F. Skrabal and G. Bartsch. Influence of exposure to moderate altitude on the plasma concentration of cortisol, aldosterone, renin, testosterone, and gonadotropins. Eur. J. Appl. Physiol. 45: 167–176, 1980.CrossRefGoogle Scholar
  41. 41..
    Iitake, K.,L. Share, J.T. Crofton, D.P. Brooks, Y. Ouchi and E.H. Blaine. Central atrial natriuretic factor reduces vasopressin secretion in the rat. Endocrinology 119: 438–440, 1986.PubMedCrossRefGoogle Scholar
  42. 42..
    Itoh, H., K. Nakao, G. Katsuura, N. Morii, S. Shiono, T. Yamada, A. Sugawara, Y. Saito, K. Watanabe, K. Igano, K. Inouye and H. Imura. Atrial natriuretic peptides: structure-activity relationship in the central action–a comparison of their antidipsogenic actions. Neuroscience Letters 74: 102–106, 1987.PubMedCrossRefGoogle Scholar
  43. 43..
    Jaeger, J.J., J.T. Sylvester, A. Cymerman, J.J. Bernerich, J.C. Denniston and J.T. Maher. Evidence for increased intrathoracic fluid volume in man at high altitude. J. Appl. Physiol. 47: 670–676, 1979.Google Scholar
  44. 44..
    Jain, S.C., J. Bardhan, Y.V. Swamy, B. Krishna and H.S. Nayar. Body fluid compartments in humans during acute high-altitude exposure. Aviat. Space Environ. Med. 51: 234–236, 1980.Google Scholar
  45. 45..
    Janoski, A.H., B.K. Whitten, J.L. Shields and J.P. Hannon. Electrolyte patterns and regulation in man during acute exposure to high altitude. Fed. Proc. 28: 1185–1189, 1969.PubMedGoogle Scholar
  46. 46..
    Johnson, H.L., C.F. Consolazio, L.O. Matoush and H.J. Krzywicki. Nitrogen and mineral metabolism at altitude. Fed. Proc. 28: 1195–1198, 1969.PubMedGoogle Scholar
  47. 47..
    Johnson, T.S., P.B. Rock, C.S. Fulco, L.A. Trad, R.F. Spark and J.T. Maher. Prevention of acute mountain sickness by dexamethasone. New Engl. J. Med. 310: 683–686, 1984.PubMedCrossRefGoogle Scholar
  48. 48..
    Jones, R.M., F.T. LaRochelle and S.M. Tenney. Role of arginine vasopressin on fluid and electrolyte balance in rats exposed to high altitude. Am. J. Physiol. 240 (Regulatory Integrative Comp. Physiol. 9): R182 - R186, 1981.PubMedGoogle Scholar
  49. 49..
    Jones. R.M., C. Terhaard, J. Zullo and S.M. Tenney. Mechanism of reduced water intake in rats at high altitude. Am. J. Physiol. 240 (Regulatory Integrative Comp. Physiol. 9 ): R187 - R191, 1981.Google Scholar
  50. 50..
    Keynes, R.J., G.W. Smith, J.D.H. Slader, M.M. Brown, S.E. Brown, N.N. Payne, T.P. Jowett and C.C. Monge. Renin and aldosterone at high altitude in man. J. Endocrinol. 92: 131–140, 1982.PubMedCrossRefGoogle Scholar
  51. 51..
    Kotchen, T.A., R.P. Hogan, A.E. Boyd, T.-K. Li, H.C. Sing and J.W. Mason. Renin, noradrenaline and adrenaline responses to simulated altitude. Clin. Sci. 44: 243–251, 1973.PubMedGoogle Scholar
  52. 52..
    Krzywicki, H.J., C.F. Consolazio, H.L. Johnson, W.C. Nielsen and R.A. Barnhart. Water metabolism in humans during acute high-altitude exposure (4300 m). J. Appl. Physiol. 30: 806–809, 1971.Google Scholar
  53. 53..
    Krzywicki, H.J., C.F. Consolazio, L.O. Matoush, H.L. Johnson and R.A. Barnhart. Body composition changes during exposure to altitude. Fed. Proc. 28: 1190–1194, 1969.PubMedGoogle Scholar
  54. 54..
    Larsen, R.F., P.B. Rock, C.S. Fulco, B. Edelman, A.J. Young, and A. Cymerman. Effect of spironolactone on acute mountain sickness. Aviat. Space Environ. Med. 57: 543–547, 1986.PubMedGoogle Scholar
  55. 55..
    Lee, J., R.L. Malvin, J.R. Claybaugh and B.S. Huang. Atrial natriuretic factor inhibits vasopressin secretion in conscious sheep. Proc. Soc. Exp. Biol. Med. 185: 272–276, 1987.PubMedGoogle Scholar
  56. 56..
    Leffler, C.W., D.W. Busija, D.P. Brooks, J.T. Crofton, L. Share, D.G. Beasley and A.M. Fletcher. Vasopressin responses to asphyxia and hemorrhage in newborn pigs. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 21): R122 - R126, 1987.PubMedGoogle Scholar
  57. 57..
    Maher, J.T., L.G. Jones, L.H. Hartley, G.H. Williams and L.I. Rose. Aldosterone dynamics during graded exercise at sea level and high altitude. J. Appl. Physiol. 39: 18–22, 1975.PubMedGoogle Scholar
  58. 58..
    Marotta, S.F. Roles of aortic and carotid chemoreceptors in activating the hypothalamo-hypophyseal-adrenocortical system during hypoxia. Proc. Soc. Exp. Biol. Med. 141: 915–927, 1972.PubMedGoogle Scholar
  59. 59..
    McKenzie, J.C., I. Tanaka, T. Inagami, K. Misono and R.M. Klein. Alterations in atrial and plasma atrial natriuretic factor (ANF) content during development of hypoxia-induced pulmonary hypertension in the rat. Proc. Soc. Exp. Biol. Med. 181: 459–463, 1986.PubMedGoogle Scholar
  60. 60..
    Michaelis, L.L. and J.P. Gilmore. Renal effects of electrical stimulation of the carotid sinus nerve. Surgery 65: 797–801, 1969.PubMedGoogle Scholar
  61. 61..
    Milledge, J.S. and D.M. Catley. Angiotensin converting enzyme activity and hypoxia. Clin. Sci. 72: 149, 1987.PubMedGoogle Scholar
  62. 62..
    Milledge, J.S., D.M. Catlet, M.P. Ward, E.S. Williams and C.R.A. Clarke. Renin-aldosterone and angiotensin-converting enzyme during prolonged altitude exposure. J. Appl. Physiol. 55: 699–702, 1983.PubMedGoogle Scholar
  63. 63..
    Milledge, J.S., D.M. Catley, E.S. Williams, W.R. Withey and B.D. Minty. Effect of prolonged exercise at altitude on the renin-aldosterone system. J. Appl. Physiol. 55: 413–418, 1983.Google Scholar
  64. 64..
    Nyhan, D.P., P.W. Clougherty and P.A. Murray. AVP-induced pulmonary vasodilation during specific V1 receptor block in concious dogs. Am J. Physiol. 253 (Heart Circ. Physiol. 22 ): H493 - H499, 1987.Google Scholar
  65. 65..
    Nyhan, D.P., H.S. Geller, H.M. Goll and P.A. Murray. Pulmonary vasoactive effects of exogenous and endogenous AVP in conscious dogs. Am. J. Physiol. 251 (Heart Circ. Physiol. 20): 1009–1016, 1986.Google Scholar
  66. 66..
    Philbin, D.M., R.A. Baratz and R.W. Patterson. The effect of carbon dioxide on plasma antidiuretic hormone levels during intermittent positive pressure breathing. Anesthesiology 33: 345–349, 1970.PubMedCrossRefGoogle Scholar
  67. 67..
    Pines, A., J.D.H. Slater and T.P. Jowett. The kidney and aldosterone in acclimatization at altitude. Br. J. Dis. Chest 71: 203–207, 1977.PubMedCrossRefGoogle Scholar
  68. 68..
    Porchet, M., H. Contat, B. Waeber, J. Nussberger and H.R. Brunner. Response of plasma arginine vasopressin levels to rapid changes in altitude. Clin. Physiol. 4: 435–438, 1984.PubMedCrossRefGoogle Scholar
  69. 69..
    Purshottam, T., M.L. Pahwa and H.D. Brahmachari. Effects of 6 hours hypoxic and cold exposure on utinary electrolyte and catecholamine excretion. Aviat. Space Environ. Med. 49: 62–65, 1978.Google Scholar
  70. 70..
    Raff, H. Glucocorticoid inhibition of neurohypophysial vasopressin secretion. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 21 ): R635 - R644, 1987.Google Scholar
  71. 71..
    Raff, H. and S.A. Levy. Renin-angiotensin-aldosterone and ACTH-cortisol control during acute hypoxemia and exercise in patients with chronic obstructive lung disease. Am. Rev. Respir. Dis. 133: 396–399, 1986.PubMedGoogle Scholar
  72. 72..
    Raff, H., J. Shinsako, L.C. Keil and M.F. Dallman. Vasopressin, ACTH, and corticosteroids during hypercapnia and graded hypoxia in dogs. Am. J. Physiol. 244 (Endocrinol. Metab. 7): E453 - E458, 1983.PubMedGoogle Scholar
  73. 73..
    Raff, H., J. Shinsako, L.C. Keil and M.F. Dallman. Feedback inhibition of adrenocorticotropin and vasopressin responses to hypoxia by physiological increases in endogenous plasma corticosteroids in dogs. Endocrinology, 114: 1245–1249, 1984.PubMedCrossRefGoogle Scholar
  74. 74..
    Raichle, M.E. and R.L. Grubb. Regulation of brain water permeability by centrally-released vasopressin. Brain Res. 143: 191–194, 1978.PubMedCrossRefGoogle Scholar
  75. 75..
    Rose, C.E., R.J. Anderson and R.M. Carey. Antidiuresis and vasopressin release with hypoxemia and hypercapnia in conscious dogs. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R127 - R134, 1984.PubMedGoogle Scholar
  76. 76..
    Roy, S.B., V. Balasubramanian, M.R. Khan, V.S. Kaushik, S.C. Manchanda and S.K. Guha. Transthoracic electrical impedance in cases of high-altitude hypoxia. Br. Med. J. 3: 771–775, 1974.PubMedCrossRefGoogle Scholar
  77. 77..
    Sampson, J.B., A. Cymerman, R.L. Burse, J.T. Maher and P.B. Rock. Procedures for the measurement of acute mountain sickness. Aviat. Space Environ. Med. 54: 1063–1073, 1983.PubMedGoogle Scholar
  78. 78..
    Schmidt, M., B. Wedler, C. Zingler, C. Ledderhos and A. Honig. Kidney function during arterial chemoreceptor stimulation II. Suppression of plasma aldosterone concentration due to hypoxic-hypercapnic perfusion of the carotid bodies in anesthetized cats. Biomed. Biochim. Acta. 5: 711–722, 1985.Google Scholar
  79. 79..
    Share, L. and M.N. Levy. Effect of carotid chemoreceptor stimulation on plasma antidiuretic hormone titer. Am. J. Physiol. 210: 157–161, 1966.Google Scholar
  80. 80..
    Share, L. and J.R. Claybaugh. Regulation of body fluids. Ann. Rev. Physiol. 34: 235–260, 1972.CrossRefGoogle Scholar
  81. 81..
    Shigeoka, J.W., G.L. Colice and G. Ramirez. Effect of normoxic and hypoxemic exercise on renin and aldosterone. J. Appl. Physiol. 59: 142–148, 1985.PubMedGoogle Scholar
  82. 82..
    Singh, I., P.K. Khanna, M.C. Srivastava, M. Lal, S.B. Roy and C.S.V. Subramanyam. Acute mountain sickness. New Engl. J. Med. 280: 175–184, 1969.CrossRefGoogle Scholar
  83. 83..
    Singh, I., M.S. Malhotra, P.K. Khanna, R.B. Nanda, T. Purshottam, T.N. Upadhyay, U. Radhakrishnan and H.D. Brahmachari. Changes in plasma cortisol, blood antidiuretic hormone and urinary catecholamines in high-altitude pulmonary oedema. Int. J. Biometeor. 18: 211–221, 1974.CrossRefGoogle Scholar
  84. 84..
    Slater, J.D.H., E.S. Williams, R.H.T. Edwards, R.P. Ekins, P.H. Sonksen, C.H. Beresford and M. McLaughlin. Potassium retention during the respiratory alkalosis of mild hypoxia in man: its relationship to aldosterone secretion and other metabolic changes. Clin. Sci. 37: 311–326, 1969.PubMedGoogle Scholar
  85. 85..
    Slater, J.D.H., R.E. Tuffley, E.S. Williams, C.H. Beresford, P.H. Sonksen, R.T.H. Edwards, R.P. Ekins and M. Mclaughlin. Control of aldosterone secretion during acclimatization to hypoxia in man. Clin. Sci. 37: 327–341, 1969.PubMedGoogle Scholar
  86. 86..
    Spath, J.A., R.M. Daugherty, J.B. Scott and F.J. Haddy. Effect of acute local renal hypoxia on renin activity in renal venous plasma. Proc. Soc. Exp. Biol. Med. 137: 484–488, 1971.Google Scholar
  87. 87..
    Stalcup, S.A., J.S. Lipset, P.M. Legant, P.J. Leuenberger and R.B. Mellins. Inhibition of converting enzyme activity by acute hypoxia in dogs. J. Appl. Physiol. 46: 227–234, 1979.PubMedGoogle Scholar
  88. 88..
    Subramanian, R., B. Bhatia and H.H. Siddiqui. Urine output and blood ADH in rats under different grades of hypoxia. In: Selected Topics in Environmental Biology, Chapter 50, eds. B. Bhatia, G.S. Chinna, B. Singh, Interprint Publications. New Delhi. pp 325–332, 1975.Google Scholar
  89. 89..
    Sutton, J.R., C.S. Houston, A.L. Mansell, M.D. McFadden, P.M. Hackett, J.R.A. Rigg and A.C.P. Powels. Effect of acetazolamide on hypoxemia during sleep at high altitude. New Engl. J. Med. 301: 1329–1331, 1979.PubMedCrossRefGoogle Scholar
  90. 90..
    Sutton, J.R., G.W. Viol, G.W. Gray, M. McFadden and P.M. Keane. Renin, aldosterone, electrolyte, and cortisol responses to hypoxic decompression. J. Appl. Physiol. 43: 421–424, 1977.PubMedGoogle Scholar
  91. 91..
    Swies, J. Haemodynamic changes accompanying lung oedema produced by iv injections of adrenaline or vasopressin into rats. Pol. J. Pharmacol. Pharm. 28: 335–340, 1976.PubMedGoogle Scholar
  92. 92..
    Tuffley, R.E., D. Rubenstein, J.D.H. Slater and E.S. Williams. Serum renin activity during exposure to hypoxia. J. Endocr. 48: 497–510, 1970.PubMedCrossRefGoogle Scholar
  93. 93..
    Ullmann, E. Acute anoxia and the excretion of water and electrolyte. J. Physiol. 155: 417–437, 1961.PubMedGoogle Scholar
  94. 94..
    Van Middlesworth, L., R.L. Banner, F. Lawson and E.M. Cox. Effects of acute intermittent anoxia upon urinary volume, specific gravity and chloride. Proc. Soc. Exp. Biol. Med. 69: 288–290, 1948.Google Scholar
  95. 95..
    Walker, B.R. Inhibition of hypoxia-induced ADH release by meclofenamate in the conscious dog. J. Appl. Physiol. 54: 1624–1629, 1983.PubMedGoogle Scholar
  96. 96.
    Walker, B.R. Role of vasopressin in the cardiovascular response to hypoxia in the conscious rat. Am. J. Physiol. 251 (Heart Circ. Physiol 20 ): H1316 - H1323, 1986.Google Scholar
  97. 97.
    Wang, B.C., W.D. Sundet and K.L. Goetz. Vasopressin in plasma and cerebrospinal fluid of dogs during hypoxia or acidosis. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E449 - E455, 1984.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • John R. Claybaugh
    • 1
  • Charles E. Wade
    • 2
  • Samuel A. Cucinell
    • 3
  1. 1.Department of Clinical InvestigationTripler Army Medical Center TAMCUSA
  2. 2.Division of Military Trauma ResearchLetterman Army Institute of ResearchPresidio of San FranciscoUSA
  3. 3.Defense Nuclear AgencyArmed Forces Radiobiological Research InstituteBethesdaUSA

Personalised recommendations