Neutron Stars, Fast Pulsars, Supernovae and the Equation of State of Dense Matter

  • Norman K. Glendenning
Part of the NATO ASI Series book series (NSSB, volume 216a)

Abstract

Astrophysical constraints on the equation of state are imposed by three sources, (1) masses of neutron stars, (2) rotational frequencies of very fast pulsars (neutron stars), and (3) supernovae. Of the three, the theoritical and observational status of the first is most secure. For the second, a half millisecond pulse over an eight hour period was reported in January but not seen agian two weeks later at the next turn at the telescope, nor at any time since. If substantiated it would be the fastest known pulsar. If it can be interpreted aas neutron star rotation, then thoery seems to indicate that it provides very stringent conditions on the equation of state when combines with the mass constraint. The physics of supernova invloves so many factors of comparable importance but high uncertainty, that they cannot be said to provide any constraint at the present time. Indeed the consensus is that it is not known whether supernovae can explode by the prompt bounce mechanism [1, 2]. no simulation whose physics has been agreed upon have been successful and earlier claims to success of the prompt explosion of 1.35M⊙ iron core progenitors have been later withdrawn [3, 4]. The delayed explosion mechanism produces only small explosions so far, and may be the means by which some stars explode, but not evidently the one by which all type II starts explode.

Keywords

Entropy Dust Assure Eter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.A. Bludman, Physics Reports 163 (1988) 47.ADSCrossRefGoogle Scholar
  2. [2]
    W. Hillebrandt, elsewhere in this volume.Google Scholar
  3. [3]
    E. Baron in paper presented at Particle and Astrophysics Workshop, Berkeley, December, 1988.Google Scholar
  4. [4]
    J. Cooperstein and E. Baron, in Supernovae ed. by A. Petschek (Springer-Verlag, to appear, 1989).Google Scholar
  5. [5]
    S.I.A. Garpman, N.K. Glendenning and Y.J. Karant, Nuc. Phys. A322 (1979) 382.ADSGoogle Scholar
  6. [6]
    P.-G. Reinhard, M. Rufa, J. Maruhn, W. Greiner and J. Friedrich, Z. Phys. A323 (1986) 13.ADSGoogle Scholar
  7. [7]
    B.D. Serot and J.D. Walecka, The Relativistic Nuclear Many-Body Problem, in “Advances in Nuclear Physics”, eds. J.W. Negele and E. Vogt, (Plenum Press N.Y. ).1986.Google Scholar
  8. [8]
    N.K. Glendenning, Nucl. Phys. A493 (1989) 521.ADSGoogle Scholar
  9. [9]
    N.K. Glendenning, Phys. Lett. 114B (1982) 392.ADSGoogle Scholar
  10. [9b]
    N.K. Glendenning, Astrophys. J. 293 (1985) 470.ADSCrossRefGoogle Scholar
  11. [9c]
    N.K. Glendenning, Z. Phys. A 326 (1987) 57.ADSGoogle Scholar
  12. [9d]
    N.K. Glendenning, Z. Phys. A, 327 (1987) 295.ADSGoogle Scholar
  13. [10]
    V.R. Pandharipande, Nucl. Phys. A178 (1971) 123.ADSGoogle Scholar
  14. [11]
    H.A. Bethe and M. Johnson, Nucl. Phys. A230 (1974) 1974.Google Scholar
  15. [12]
    N.K. Glendenning, P. Hecking and V. Ruck, Ann. Phys. (N.Y.) 149 (1983) 22.ADSCrossRefGoogle Scholar
  16. [13]
    M. Prakash, T.L. Ainsworth and J.M. Lattimer, Phys. Rev. Lett. 61 (1988) 2518.ADSCrossRefGoogle Scholar
  17. [14]
    B. Friedman, V.R. Pandharipande and Q.N. Usmani, Nucl. Phys. A372 (1981) 483.ADSGoogle Scholar
  18. [15]
    T.L. Ainsworth, E. Baron, G.E. Brown, J. Cooperstein, M. Prakash, Nucl. Phys. A464 (1987) 740.ADSGoogle Scholar
  19. [16]
    B. ter Haar and R. Malfliet, Phys. Reports 149 (1987) 208.ADSCrossRefGoogle Scholar
  20. [17]
    E. Baron, J. Cooperstein and S. Kahana, Nucl. Phys. A440 (1985) 744.ADSGoogle Scholar
  21. [18]
    E. Baron, J. Cooperstein and S. Kahana, Phys. Rev. Lett. 55 (1985) 126.ADSCrossRefGoogle Scholar
  22. [19]
    E. Baron, H.A. Bethe, G.E. Brown, J. Cooperstein and S. Kahana, Phys. Rev. Lett. 59 (1987) 736.ADSCrossRefGoogle Scholar
  23. [20]
    J. Kristian, C.R. Pennypacker, J. Middleditch, M.A. Hamuy, J.N. Imamura, W.E. Kunkel, R. Lucinio, D.E. Morris, R.A. Muller, S. Perlmutter, S.J. Rawlings, T.P. Sasseen, I.K. Shelton, T.Y. Steinman-Cameron and I.R. Tuohy, NATURE 385 (1989) 234.ADSCrossRefGoogle Scholar
  24. [21]
    J. Middleditch et. al. Further Analysis of the PSR1987A Discovery Data, preprint, Aug, 1989.Google Scholar
  25. [22]
    J.L. Friedman, J.A. Ipser and L. Parker, Astrophys. J. 304 (1986) 115.ADSCrossRefGoogle Scholar
  26. [23]
    J.L. Friedman, J.A. Ipser and L. Parker, Phys. Rev. Let. 62 (1989) 3015.ADSCrossRefGoogle Scholar
  27. [24]
    W.D. Arnett and R.L. Bowers, Astrophys. J. Suppl. 33 (1977) 415.ADSCrossRefGoogle Scholar
  28. [25]
    E. Witten, Phys. Rev. D 30 (1984) 272.MathSciNetADSCrossRefGoogle Scholar
  29. [26]
    H.A. Bethe, G.E. Brown and J. Cooperstein, Nucl. Phys. A462 (1987) 791.ADSGoogle Scholar
  30. [27]
    B. Banerjee, N.K. Glendenning and T Matsui, Phys. Lett. 127B (1983) 453.ADSGoogle Scholar
  31. [28]
    N.K. Glendenning and T. Matsui, Phys. Rev. D 28 (1983) 28.CrossRefGoogle Scholar
  32. [29]
    N.K. Glendenning, Phys. Rev. Let. 63 (1989) 1443.ADSCrossRefGoogle Scholar
  33. [30]
    N.K. Glendenning, Possible Gravitational Collapse into a Black Hole of the Pulsar in Supernova 1987A, LBL-26978, March 1989.Google Scholar
  34. [31]
    W.H. Munk and G.J.F. MacDonald, The Rotation of the Earth (Cambridge University Press, Cambridge, 1960).Google Scholar
  35. [32]
    D. Pines and J. Shaham, Nature Phys. Sci. 235 (1972) 43.ADSGoogle Scholar
  36. [33]
    J.L. Synge and B.A. Griffith Principles of Mechanics McGraw-Hill, N.Y. (1949) 425.MATHGoogle Scholar
  37. [34]
    N.K. Glendenning, Deformed Pulsar Model of Subpulse Drift, Nulling and Mode Switching, LBL-27026, April 1989.Google Scholar
  38. [35]
    J. Middleditch et. al. The Pulse Profile and Planetary Companions of the Sub-millisecond Pulsar in SN1987A, preliminary preprint, May, 1989.Google Scholar
  39. [36]
    N. Comins, Mon. Not. Royal Astron. Soc. 189 (1979) 233.MathSciNetADSGoogle Scholar
  40. [37]
    T.D. Lee, Phys. Rev. D 35 (1987) 3637.ADSCrossRefGoogle Scholar
  41. [37b]
    R. Friedberg, T.D. Lee and Y. Pang, Phys. Rev. D 35 (1987) 3640; ibid. 3658.ADSGoogle Scholar
  42. [37c]
    T.D. Lee and Y. Pang, Phys. Rev. D 35 (1987) 3678.ADSCrossRefGoogle Scholar
  43. [38]
    J.J. Van der Bij and M. Gleiser, Phys. Lett. B 194 (1987) 482.ADSCrossRefGoogle Scholar
  44. [39]
    N.K. Glendenning, T. Kodama and F.R. Klinkhammer, Phys. Rev. D 38 (1988) 3226.ADSCrossRefGoogle Scholar
  45. [40]
    S.E. Woosley and T.A. Weaver, Ann. Rev. Astron. Astrophys. 24 (1986) 205.ADSCrossRefGoogle Scholar
  46. [41]
    S.E. Woolsey, P.A. Pinto, L. Ensman, Astrophys. J. 324 (1988) 466.ADSCrossRefGoogle Scholar
  47. [42]
    N.K. Glendenning, Phys. Rev. C 37 (1988) 2733.ADSCrossRefGoogle Scholar
  48. [43]
    H.A. Bethe, Ann. Rev. Nucl. and Part. Sc. 38 (1988) 1.ADSCrossRefGoogle Scholar
  49. [44]
    G.E. Brown, (private communication, January, 1989).Google Scholar
  50. [45]
    J.M. Weisenberg and J.H. Taylor, Phys. Rev. Lett. 52 (1984) 1348.ADSCrossRefGoogle Scholar
  51. [45b]
    J.H. Taylor (private communication, April 1987).Google Scholar
  52. [46]
    J.R. Wilson, in Numerical Astrophysics ed. by J. Centrella, J. LeBlanc and R. Bowers (Jones and Bartlett, Boston 1985) p422.Google Scholar
  53. [46b]
    J.R. Wilson, R. Mayle, S.E. Woosley and T. Weaver, Ann. New York Acadamy of Sciences 470 (1986) 267.ADSCrossRefGoogle Scholar
  54. [47]
    J.R. Wilson, R. Mayle, S.E. Woosley and T. Weaver, Ann. New York Acadamy of Sciences 470 (1986) 267.ADSCrossRefGoogle Scholar
  55. [48]
    J.R. Wilson, see elsewhere in this volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Norman K. Glendenning
    • 1
  1. 1.Nuclear Science DivisionLawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations