Spectral Functions and the Momentum Distribution of Nuclear Matter

  • A. Ramos
  • A. Polls
  • W. H. Dickhoff
Part of the NATO ASI Series book series (NSSB, volume 216a)

Abstract

A self-consistent Green’s Function approach is used to study the influence of shortrange correlations beyond the mean field picture of nuclei. The ladder equation, including both particle-particle and hole-hole propagation, is solved in nuclear matter for a semi-realistic interaction derived from the Reid soft core potential. The nucleon spectral functions are calculated from the momentum and energy dependent self-energy. An important fraction of the single particle strength is moved at very high energy due to the strong short-range repulsion in the interaction. The momentum distribution is calculated from the hole spectral function and an average depletion of normally fully occupied states of about 13% is found at normal density.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Frullani and J. Mougey, J. Adv. Nucl. Phys. 14 (1984) 1Google Scholar
  2. 2.
    E.N.M. Quint et al., Phys. Rev. Lett. 58 (1987) 1088ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Cavedon et al., Phys. Rev. Lett. 49 (1982) 978ADSCrossRefGoogle Scholar
  4. 4.
    B. Frois and C.N. Papanicolas, Ann. Rev. Nucl. Part. Sci. 37 (1987) 133ADSCrossRefGoogle Scholar
  5. 5.
    V.R. Pandharipande, C.N. Papanicolas and J. Wambach, Phys. Rev. Lett. 53 (1984) 1133ADSCrossRefGoogle Scholar
  6. 6.
    M. Jaminon, C. Mahaux and H. Ngo, Nucl. Phys. A440 (1985) 228ADSGoogle Scholar
  7. 7.
    J.W.A. den Herder et al., Phys. Lett. 184B (1987) 11ADSGoogle Scholar
  8. 8.
    A.A. Abrikosov, L.P. Gorkov and I.E. Dzyaloshinski, Methods of quantum Geld theory in statistical physics (Dover, New York, 1975)Google Scholar
  9. 9.
    A.Ramos, A.Polls and W.H.Dickhoff, preprintGoogle Scholar
  10. 10.
    K.A. Brueckner, C.A. Levinson and H.M. Mahmoud, Phys. Rev. 95 (1954) 217ADSMATHCrossRefGoogle Scholar
  11. 11.
    A. Ramos, A. Polls and W.H. Dickhoff, Condensed Matter Theories Vol.3, eds. J.S. Arponen, R.F. Bishop and M. Manninen (Plenum, New York, 1988)Google Scholar
  12. 12.
    A. Ramos, W.H. Dickhoff and A. Polls, Phys. Lett. 219B (1989) 15ADSGoogle Scholar
  13. 13.
    R.V. Reid, Ann. Phys. 50 (1968) 411ADSCrossRefGoogle Scholar
  14. 14.
    W.H. Dickhoff, Condensed Matter Theories Vol.4 (Plenum, New York, 1989) in PressGoogle Scholar
  15. 15.
    M.G.E. Brand, K. Allaart and W.H. Dickhoff, Phys. Lett. 214B (1988) 483ADSGoogle Scholar
  16. 16.
    W.H. Dickhoff, M.G.E. Brand, K. Allaart, A. Ramos and A. Polls, Momentum distributions, R.N. Silver and P.E. Sokol, eds. (Plenum, New York, 1989), in pressGoogle Scholar
  17. 17.
    P. Grangé, J. Cugnon and A. Lejeune, Nucl. Phys. A473 (1987) 365ADSGoogle Scholar
  18. 18.
    S. Fantoni and V.R. Pandharipande, Nucl. Phys. A427 (1984) 473ADSGoogle Scholar
  19. 19.
    O. Benhar, A. Fabrocini and S. Fantoni, Preprint INFN-ISS 88/4 (1988)Google Scholar
  20. 20.
    A.B. Migdal, Soviet Phys. JETP 5 (1957) 333MathSciNetGoogle Scholar
  21. 21.
    M.F. Flynn, J.W. Clark, R.M. Panoff, O. Bohigas and S. Stringaxi, Nucl. Phys. A427 (1984) 253ADSGoogle Scholar
  22. 22.
    J. Jeukenne, A. Lejeune and C. Mahaux, Phys. Reports 25C (1976) 83ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • A. Ramos
    • 1
  • A. Polls
    • 1
  • W. H. Dickhoff
    • 2
  1. 1.Departament d’Estructura i Constituents de la MatèriaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Department of PhysicsWashington UniversitySt. LouisUSA

Personalised recommendations