Relativistic Vlasov-Uehling-Uhlenbeck Model for High-Energy Heavy-Ion Collisions

  • C. M. Ko
  • Q. Li
  • J. Q. Wu
  • L. H. Xia
Part of the NATO ASI Series book series (NSSB, volume 216a)


One of the main motivations for carrying out research in heavy-ion collisions is to create nuclear matter at various densities and excitation energies in order to map out the nuclear phase diagram. The normal nuclei have a density of ρ 0 = 0.16 fm-3 and is at zero temperature. To extend beyond this requires the compression and deposition of energy in the nuclear matter. Experiments carried out so far indicate that heavy-ion collisions indeed offer such a possibility. Depending on the incident energy per nucleon in the collision, differernt regions of the nuclear phase diagram can be probed.


Nuclear Matter Transverse Momentum Distribution Nuclear Matter Density Normal Nuclear Matter Density Meson Propagator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.F. Bertsch, H. Kruse, and S. Das Gupta, Phys.Rev. C29, 673 (1984).ADSGoogle Scholar
  2. 2.
    J.J. Molitoris and H. Stöcker, Phys. Rev. C32, 346 (1985).ADSGoogle Scholar
  3. 3.
    J. Aichelin and G.F. Bertsch, Phys. Rev. C31, 1730 (1985).ADSGoogle Scholar
  4. 4.
    W. Bauer et al, Phys. Rev. C34, 2127 (1986).ADSGoogle Scholar
  5. 5.
    C.M. Ko and J. Aichelin, Phys. Rev. Lett. 55, 2661 (1985)ADSCrossRefGoogle Scholar
  6. 5b.
    C.M. Ko and J. Aichelin Phys. Rev. C35, 1976 (1987).ADSGoogle Scholar
  7. 6.
    H. Kruse, B.V. Jacak, and H. Stöcker, Phys. Rev. Lett. 52, 289 (1985).ADSCrossRefGoogle Scholar
  8. 7.
    B.D. Serot and J.D. Walecka, in Advances in Nuclear Physics, edited by J.W. Negale and E. Vogt (Plenum, New York, 1986), Vol. 16.Google Scholar
  9. 8.
    C.M. Ko, Q. Li, and R. Wang, Phys. Rev. Lett. 59, 1084 (1987).ADSCrossRefGoogle Scholar
  10. 9.
    C.M. Ko and Q. Li, Phys. Rev.C37, 2270 (1988).ADSGoogle Scholar
  11. 10.
    Q. Li and C.M. Ko, Mod. Phys. Lett. A3, 465 (1988).ADSGoogle Scholar
  12. 11.
    Q. Li, J.Q. Wu, and C.M. Ko, Phys. Rev. C, Phys. Rev. C39, 849 (1989).ADSCrossRefGoogle Scholar
  13. 12.
    K. Holinde, Phys. Rep. 68, 122 (1981).ADSCrossRefGoogle Scholar
  14. 13.
    B. ter Haar and R. Malfliet, Phys. Rep. 149, 207 (1987).ADSCrossRefGoogle Scholar
  15. 14.
    A. Faessler, Nucl. Phys. A495, 103c (1989).MathSciNetADSGoogle Scholar
  16. 15.
    J.D. Walecka, Ann. Phys. 83, 491 (1974).ADSCrossRefGoogle Scholar
  17. 16.
    P. Danielewicz, Ann, Phys. 152, 239 (1984).ADSCrossRefGoogle Scholar
  18. 17.
    L.P. Kadanoff and G. Baym, “Quantum Statistical Mechanics”, Benjamin, New York, 1962.MATHGoogle Scholar
  19. 18.
    S.A. Chin, Ann. Phys. 108, 301 (1977).ADSCrossRefGoogle Scholar
  20. 19.
    H. Elze et al., Mod. Phys. Lett. A2, 451 (1987).ADSGoogle Scholar
  21. 20.
    C.Y. Wong, Phys. Rev. C25, 1461 (1982).ADSGoogle Scholar
  22. 21.
    R.Y. Cusson et al., phys. Rev. Lett. 55, 2786 (1985).ADSCrossRefGoogle Scholar
  23. 22.
    C.H. Johnson, D.J. Horen, and C. Mahaux, Phys. Rec. C36, 2252 (1987).ADSGoogle Scholar
  24. 23.
    X. Ji, Phys. Lett. B208, 19 (1988).ADSGoogle Scholar
  25. 24.
    J. Boguta and H. Stöcker, Phys. Lett. B120, 289 (1983).ADSGoogle Scholar
  26. 25.
    J. Cugnon, D. Kinet, and J. Vandermeulen, Nucl. Phys. A352, 505 (1981).ADSGoogle Scholar
  27. 25b.
    J. Cugnon, D. Kinet, and J. Vandermeulen, Nucl. Phys A379, 553 (1982).ADSGoogle Scholar
  28. 26.
    H. Ströbele et al, Phys. Rev. C27, 1349 (1983).ADSGoogle Scholar
  29. 27.
    J. Aichelin et al., Phys. Rev. Lett. 58, 1926 (1987).ADSCrossRefGoogle Scholar
  30. 28.
    C. Gale, G. Bertsch, and S. Das Gupta, Phys. Rev. C35, 1666 (1987).ADSGoogle Scholar
  31. 29.
    B. Blättel, V. Koch, W. Cassing, and U. Mosel, Phys. Rev. C38, 1767 (1988).ADSGoogle Scholar
  32. 30.
    S. Hayashi et al, Phys. Rev. C38, 1229 (1988).ADSGoogle Scholar
  33. 31.
    J. Aichelin et al, Phys. Rev. Lett. 62, 1461 (1989).ADSCrossRefGoogle Scholar
  34. 32.
    J.Q. Wu and C.M. Ko, Nucl. Phys. A, in press.Google Scholar
  35. 33.
    H. Krusawa and T. Suzuki, Nucl. Phys. A445, 685 (1985).Google Scholar
  36. 34.
    B.L. Friman and P.A. Henning, Phys. Lett. B206, 579 (1988).ADSGoogle Scholar
  37. 35.
    A. Arima et al, Phys. Lett. B122, 126 (1983).ADSGoogle Scholar
  38. 36.
    G.E. Brown, E. Oset, M. Vicente Vacas, and W. Weise, Stony Brook preprint (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • C. M. Ko
    • 1
  • Q. Li
    • 1
  • J. Q. Wu
    • 1
  • L. H. Xia
    • 1
  1. 1.Cyclotron Institute and Center for Theoretical PhysicsTexas A&M UniversityCollege StationUSA

Personalised recommendations