Skip to main content

Relativistic Vlasov-Uehling-Uhlenbeck Model for High-Energy Heavy-Ion Collisions

  • Chapter
The Nuclear Equation of State

Part of the book series: NATO ASI Series ((NSSB,volume 216a))

  • 420 Accesses

Abstract

One of the main motivations for carrying out research in heavy-ion collisions is to create nuclear matter at various densities and excitation energies in order to map out the nuclear phase diagram. The normal nuclei have a density of ρ 0 = 0.16 fm-3 and is at zero temperature. To extend beyond this requires the compression and deposition of energy in the nuclear matter. Experiments carried out so far indicate that heavy-ion collisions indeed offer such a possibility. Depending on the incident energy per nucleon in the collision, differernt regions of the nuclear phase diagram can be probed.

Work supported in part by NSF Grant No. PHY-8608149 and the Robert A. Welch Foundation Grant No. A-1110

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.F. Bertsch, H. Kruse, and S. Das Gupta, Phys.Rev. C29, 673 (1984).

    ADS  Google Scholar 

  2. J.J. Molitoris and H. Stöcker, Phys. Rev. C32, 346 (1985).

    ADS  Google Scholar 

  3. J. Aichelin and G.F. Bertsch, Phys. Rev. C31, 1730 (1985).

    ADS  Google Scholar 

  4. W. Bauer et al, Phys. Rev. C34, 2127 (1986).

    ADS  Google Scholar 

  5. C.M. Ko and J. Aichelin, Phys. Rev. Lett. 55, 2661 (1985)

    Article  ADS  Google Scholar 

  6. C.M. Ko and J. Aichelin Phys. Rev. C35, 1976 (1987).

    ADS  Google Scholar 

  7. H. Kruse, B.V. Jacak, and H. Stöcker, Phys. Rev. Lett. 52, 289 (1985).

    Article  ADS  Google Scholar 

  8. B.D. Serot and J.D. Walecka, in Advances in Nuclear Physics, edited by J.W. Negale and E. Vogt (Plenum, New York, 1986), Vol. 16.

    Google Scholar 

  9. C.M. Ko, Q. Li, and R. Wang, Phys. Rev. Lett. 59, 1084 (1987).

    Article  ADS  Google Scholar 

  10. C.M. Ko and Q. Li, Phys. Rev.C37, 2270 (1988).

    ADS  Google Scholar 

  11. Q. Li and C.M. Ko, Mod. Phys. Lett. A3, 465 (1988).

    ADS  Google Scholar 

  12. Q. Li, J.Q. Wu, and C.M. Ko, Phys. Rev. C, Phys. Rev. C39, 849 (1989).

    Article  ADS  Google Scholar 

  13. K. Holinde, Phys. Rep. 68, 122 (1981).

    Article  ADS  Google Scholar 

  14. B. ter Haar and R. Malfliet, Phys. Rep. 149, 207 (1987).

    Article  ADS  Google Scholar 

  15. A. Faessler, Nucl. Phys. A495, 103c (1989).

    MathSciNet  ADS  Google Scholar 

  16. J.D. Walecka, Ann. Phys. 83, 491 (1974).

    Article  ADS  Google Scholar 

  17. P. Danielewicz, Ann, Phys. 152, 239 (1984).

    Article  ADS  Google Scholar 

  18. L.P. Kadanoff and G. Baym, “Quantum Statistical Mechanics”, Benjamin, New York, 1962.

    MATH  Google Scholar 

  19. S.A. Chin, Ann. Phys. 108, 301 (1977).

    Article  ADS  Google Scholar 

  20. H. Elze et al., Mod. Phys. Lett. A2, 451 (1987).

    ADS  Google Scholar 

  21. C.Y. Wong, Phys. Rev. C25, 1461 (1982).

    ADS  Google Scholar 

  22. R.Y. Cusson et al., phys. Rev. Lett. 55, 2786 (1985).

    Article  ADS  Google Scholar 

  23. C.H. Johnson, D.J. Horen, and C. Mahaux, Phys. Rec. C36, 2252 (1987).

    ADS  Google Scholar 

  24. X. Ji, Phys. Lett. B208, 19 (1988).

    ADS  Google Scholar 

  25. J. Boguta and H. Stöcker, Phys. Lett. B120, 289 (1983).

    ADS  Google Scholar 

  26. J. Cugnon, D. Kinet, and J. Vandermeulen, Nucl. Phys. A352, 505 (1981).

    ADS  Google Scholar 

  27. J. Cugnon, D. Kinet, and J. Vandermeulen, Nucl. Phys A379, 553 (1982).

    ADS  Google Scholar 

  28. H. Ströbele et al, Phys. Rev. C27, 1349 (1983).

    ADS  Google Scholar 

  29. J. Aichelin et al., Phys. Rev. Lett. 58, 1926 (1987).

    Article  ADS  Google Scholar 

  30. C. Gale, G. Bertsch, and S. Das Gupta, Phys. Rev. C35, 1666 (1987).

    ADS  Google Scholar 

  31. B. Blättel, V. Koch, W. Cassing, and U. Mosel, Phys. Rev. C38, 1767 (1988).

    ADS  Google Scholar 

  32. S. Hayashi et al, Phys. Rev. C38, 1229 (1988).

    ADS  Google Scholar 

  33. J. Aichelin et al, Phys. Rev. Lett. 62, 1461 (1989).

    Article  ADS  Google Scholar 

  34. J.Q. Wu and C.M. Ko, Nucl. Phys. A, in press.

    Google Scholar 

  35. H. Krusawa and T. Suzuki, Nucl. Phys. A445, 685 (1985).

    Google Scholar 

  36. B.L. Friman and P.A. Henning, Phys. Lett. B206, 579 (1988).

    ADS  Google Scholar 

  37. A. Arima et al, Phys. Lett. B122, 126 (1983).

    ADS  Google Scholar 

  38. G.E. Brown, E. Oset, M. Vicente Vacas, and W. Weise, Stony Brook preprint (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ko, C.M., Li, Q., Wu, J.Q., Xia, L.H. (1989). Relativistic Vlasov-Uehling-Uhlenbeck Model for High-Energy Heavy-Ion Collisions. In: Greiner, W., Stöcker, H. (eds) The Nuclear Equation of State. NATO ASI Series, vol 216a. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0583-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0583-5_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7877-1

  • Online ISBN: 978-1-4613-0583-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics