Skip to main content

Structural, Functional and Cytochemical Plasticity of Primary Afferent Terminals in the Upper Dorsal Horn

  • Chapter
The Primary Afferent Neuron

Abstract

Structural and functional plasticity of central terminals of primary sensory neurons is regulated by nerve growth factor supplied by retrograde axoplasmic transport to dorsal root ganglion cells. Two important aspects of this regulatory system: transganglionic degenerative atrophy and regenerative synaptoneogenesis are reviewed in view of electron microscopic histochemical and immunocytochemical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldskogius, H., Cerne, H., and Holmberg, A., 1985a, The effect of sciatic nerve transection on myelinated fibers in the L5 dorsal root and lumbar dorsal column. A Marchi study in the rat, Anat. Embryol., 171:181

    CAS  Google Scholar 

  • Aldskogius, H., Arvidsson, J., and Grant, G., 1985b, The reaction of primary sensory neurons to peripheral nerve injury with particular emphasis on transganglionic changes, Brain Res. Rev., 10:27

    Google Scholar 

  • Aldskogius, H., and Risling, M., 1983, Preferential loss of unmyelinated axons in the L7 dorsal root of kittens following sciatic neurectomy, Brain Res., 289:358

    PubMed  CAS  Google Scholar 

  • Arvidsson, J., and Grant, G., 1979, Further observations on transganglionic degeneration in trigeminal primary sensory neurons, Brain Res., 162:1

    PubMed  CAS  Google Scholar 

  • Arvidsson, J., 1979, An ultrastructural study of transganglionic degeneration in the main sensory trigeminal nucleus of the rat, J. Neurocytol., 8:31

    PubMed  CAS  Google Scholar 

  • Barber, R. P., Vaughn, J. E., Slemmon, J. R., Salvaterra, P. M., Robert, P. M., and Leeman, S. E., 1979, The origin, distribution and synaptic relationships of substance P axons in rat spinal cord, J. Comp. Neurol., 184:331

    PubMed  CAS  Google Scholar 

  • Barbut, D., Polak, J. M., and Wall, P. D., 1981, Substance P in spinal cord dorsal horn decreases following peripheral nerve injury, Brain Res., 205:289

    PubMed  CAS  Google Scholar 

  • Bernstein, J. J., and Bernstein, M. E., 1971, Axonal regeneration and formation of synapses proximal to the side of lesion following hemisection of the rat spinal cord, Exp. Neurol., 30:336

    PubMed  CAS  Google Scholar 

  • Bezzegh, A., Knyihár-Csillik, E., Boti, Zs., Tajti, J., Zaborski, Z., and Csillik, B., 1986, A computer-aided analysis of the effect of peripheral nerve transection on TMPase activity of substantia gelatinosa Rolandi, Z. mikrosk.-anat. Forsch., 100:428

    PubMed  CAS  Google Scholar 

  • Black, I. B., Adler, J. E., Dreyfus, C. F., et al, 1984, Neurotransmitter plasticity at the molecular level, Science, 225:1266

    PubMed  CAS  Google Scholar 

  • Burnstock, G., 1978, A basis for distinguishing two types of purinergic receptor, in: “Cell membrane receptors for drugs and hormones: a multidisciplinary approach,” L. Bolis and R. W. Straub, eds., Raven Press, New York: 107

    Google Scholar 

  • Cajal, S. R. y, 1918, Degeneration and regeneration of the nervous system, University Press, Oxford: 750

    Google Scholar 

  • Csillik, B., and Knyihár, E., 1975, Degenerative atrophy and regenerative proliferation in the rat spinal cord, Z. mikrosk.-anat. Forsch., 89:1099–1103

    PubMed  CAS  Google Scholar 

  • Csillik, B., and Knyihár, E., 1976, “New” features of the trophical entity, in: “Neuron concept today,” J. Szentágothal and J. Hamori, eds., Tihany: 27

    Google Scholar 

  • Csillik, B., Knyihár, E., and Elshiekh, A. A., 1977a, Degenerative atrophy of central terminals of primary sensory neurons induced by blockade of axoplasmic transport in peripheral nerves, Experientia (Basel), 33:656

    CAS  Google Scholar 

  • Csillik, B., and Knyihár, E., 1977b, Histochemistry of synapses, Cell Mol. Biol., 22:285–292

    CAS  Google Scholar 

  • Csillik, B., 1980, Infrastructure of the neuron, in: “Neurotransmitters. Comparative aspects,” J. Salanki and T. M. Turpaev, eds., Akadémiai Kiadó: 149

    Google Scholar 

  • Csillik, B., and Knyihár, E., 1978a, Biodynamic plasticity in the Rolando substance, Progr. Neurobiol., 10:202

    Google Scholar 

  • Csillik, B., Knyihár, E., Jojart, I., Elshiek, A. A., and Pór, I., 1978b, Perineural microtubule inhibitors induce degenerative atrophy of central nociceptive terminals in the Rolando substance, Res. Comm. Chem. Path. Pharm., 21:467

    CAS  Google Scholar 

  • Csillik, B., Knyihár, E., and Rakic, P., 1982, Transganglionic degenerative atrophy and regenerative proliferation in the Rolando substance of the primate spinal cord: discoupling and restoration of synaptic connectivity in the central nervous system after peripheral lesions, Folia Morph., 30:189

    CAS  Google Scholar 

  • Csillik, B., and Knyihár-Csillik, E., 1981a, The spinal projection area of primary nociceptive afferents: Regenerative synaptoneogenesis in the Rolando substance, in: “Adv. Physiol. Sci., Vol. 36,” O. Feher and F. Joo, eds., Akadémiai Kiadó: 47

    Google Scholar 

  • Csillik, B., and Knyihár-Csillik, E., 1981b, Reactions of the substantia gelatinosa Rolandi to injury of peripheral sensory axons, in: “Spinal cord sensation,” A. G. Brown and M. Réthelyi, eds., Scottish Academic Press, Edinburgh: 309

    Google Scholar 

  • Csillik, B., and Knyihár-Csillik, E., 1981c, Regenerative synaptoneogenesis in the mammalian spinal cord: Dynamics of synaptochemical restoration in the Rolando substance after transganglionic degenerative atrophy, J. Neural Transmiss., 52:303

    CAS  Google Scholar 

  • Csillik, B., Knyihár-Csillik, E., and Tajti, J., 1982a, Blockade of retrograde axoplasmic transport induces tranganglionic degenerative atrophy of central terminals of primary nociceptive neurons, Acta Biol. Acad. Sci. Hung., 33:149

    CAS  Google Scholar 

  • Csillik, B., and Knyihár-Csillik, E., 1982b, Reversibility of microtubule inhibitor-induced transganglionic degenerative atrophy of central terminals of primary nociceptive neurons, Neuroscience, 7:1149

    CAS  Google Scholar 

  • Csillik, B., Schwab, M. E., and Thoenen, H., 1983, Transganglionic regulation by nerve growth factor of the primary nociceptive analyzer, Neurosci. Lett. Suppl., 14:79

    Google Scholar 

  • Csillik, B., Knyihár-Csillik, E., Bezzegh, A., Kiss, J., Léránth, Cs., Pór, I., and Záborszky, Z., 1984a, Transganglionic degenerative atrophy of central terminals of primary sensory neurons after perineural application of vinblastin: decay of dorsal root potential and depletion of neuropeptides, in: “Antidromic vasodilatation and neurogenic inflammation”, L. A. Chahl, J. Szolcsanyi, and F. Lembeck, eds., Akadémiai Kiadó, Budapest: 141

    Google Scholar 

  • Csillik, B., 1984b, Nerve growth factor regulates central terminals of primary sensory neurons, Z. mikr.- anat. Forsch., 98:11

    CAS  Google Scholar 

  • Csillik, B., KnyihárCsillik, E., Pór, I., et al., 1984c, Role of nerve growth factor (NGF) in structural and functional regulation of the primary nociceptive analyzer, Acta Physiol. Hung., 63:311

    Google Scholar 

  • Csillik, B., and Knyihár-Csillik, E., 1986, “The protean gate. Structure and plasticity of the primary nociceptive analyzer,” Akadámiai Kiadó

    Google Scholar 

  • Csillik, B., Schwab, M. E., and Thoenen, H., 1985a, Transganglionic regulation of central terminals of dorsal root ganglion cells by nerve growth factor (NGF), Brain Res., 331:11

    CAS  Google Scholar 

  • Csillik, B., Kovacs, K., Penke, B., Tajti, J., and Szilard, J., 1985b, Transganglionic effect of basic peptides on the primary nociceptive analyzer, in: “Receptors and centrally acting drugs,” E. S. Vizi, S. Fürst, and G. Zsilla, eds., Proc. 4th Congr. Hung. Pharmacol. Soc.,Vol. 2, Budapest

    Google Scholar 

  • Csillik, B., Knyihár-Csillik, E., and Bezzegh, A., 1986, Comparative electron histochemistry of thiamine monophosphatase and substance P in the upper dorsal horn, Acta histochem., 80:125

    PubMed  CAS  Google Scholar 

  • Cuello, A. C., 1987, Peptides as neurormodulators in primary sensory neurons, Neuropharmacol., 26:971

    CAS  Google Scholar 

  • Devor, M., and Claman, D., 1980, Mapping and plasticity of acid phosphatase afferents in the rat dorsal horn, Brain Res., 190:17

    PubMed  CAS  Google Scholar 

  • Dreyfus, P. M., 1985, The neurochemistry of vitamin deficiencies. — Thiamin, in: “Handbook of neurochemistry, Vol. 10,”A. Lajtha, ed., Plenum Press, New York: 759

    Google Scholar 

  • Ferencsik, M., 1986, Dynamism of tranganglionic degenerative atrophy following crush injury to the peripheral nerve, Z. mikrosk. -anat. Forsch., 100:490

    PubMed  CAS  Google Scholar 

  • Fischer, J., and Csillik, B., 1985, Lectin binding: a genuine marker for transganglionic regulation of human primary sensory neurons, Neurosci. Lett., 54:263

    PubMed  CAS  Google Scholar 

  • Fischer, J., Klein, P. J., and Csillik, B., 1985, Ulex Europaeus Ilectin-binding glycoprotein in primary sensory terminals of human spinal cord, in:“Lectins, Vol. 4,” T. C. Bog-Hansen and J. Breborowicz, eds., Walter de Gruyter and Co., Berlin-New York: 117

    Google Scholar 

  • Fitzgerald, M., and Swett, J., 1983, The termination pattern of sciatic nerve afferents in the substantia gelatinosa of neonatal rats, Neurosci. Lett., 43:149

    PubMed  CAS  Google Scholar 

  • Fitzgerald, M., Woolf, C. J., Gibson, S. J., and Mallaburn, P. S., 1984, Alterations in the structure, function and chemistry of C fibres following local application of vinblastine to the sciatic nerve of the rat, J. Neurosci., 4:430

    PubMed  CAS  Google Scholar 

  • Fitzgerald, M., and Vrbova, G., 1985, Plasticity of acid phosphatase (FRAP) afferent terminal fields and of dorsal horn cell growth in the neonatal rat, J. Comp. Neurol., 240:414

    PubMed  CAS  Google Scholar 

  • Fitzgerald, M., Wall, P. D., Goedert, M., and Emson, P. C., 1985a, Nerve growth factor counteracts the neurophysiological and neurochemical effects of chronic sciatic nerve section, Brain. Res., 332:131

    CAS  Google Scholar 

  • Fitzgerald, M., 1985b, The sprouting of saphenous nerve terminals in the spinal cord following early postnatal sciatic nerve section in the rat, J. Comp. Neurol., 240:407

    CAS  Google Scholar 

  • Gobel, S., and Binck, J. M., 1977, Degenerative changes in primary trigeminal axons and in neurons in nucleus caudalis following tooth pulp extirpations in the cat, Brain Res., 132:347

    PubMed  CAS  Google Scholar 

  • Gobel, S., 1984, An electron microscopic analysis of the transsynaptic effects of peripheral nerve injury subsequent to tooth pulp extirpations on neurons in Lamina I and II of the medullary dorsal horn, J. Neuroscience, 4:2281

    CAS  Google Scholar 

  • Goldberger, M. E., and Murray, M., 1974, Restitution of function and collateral sprouting in the rat spinal cord: the deafferentated animal. J. Comp. Neurol., 158:37

    PubMed  CAS  Google Scholar 

  • Grant, G., and Ygge, J., 1981, Somatotopical organization of the thoracic spinal nerve in the dorsal horn demonstrated with transganglionic degeneration, J. Comp. Neurol., 202:357

    PubMed  CAS  Google Scholar 

  • Grazidei, P. P. C., and Monti Grazidei, G. A., 1978, Continuous nerve cell renewal in the olfactory system, in: “Handbook of sensory Physiology, Vol. FX,” M. Jacobson, ed., Springer-Verlag, New York: 55

    Google Scholar 

  • Gutman, E., Gutman, C., Medawar, P. B., and Young, J. Z., 1942, The rate of regeneration of nerve, J. Exp. Biol., 19:14

    Google Scholar 

  • Hanzely, B., Knyihár-Csillik, E., and Csillik, B., 1983, Fluoride-resistant acid phosphatase (FRAP) activity of nociceptive nerve terminals in the dental pulp, Z. mikrosk. -anat. Forsch., 97:43

    PubMed  CAS  Google Scholar 

  • Horch, K. W., and Lisney, S. J. W., 1981, Changes in primary afferent depolarization of sensory neurons during peripheral nerve regeneration in the cat, J. Physiol. (Lond.), 313:287

    CAS  Google Scholar 

  • Hökfelt, T., Kellerth, J. O., Nilsson, G., and Pernow, B., 1975, Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons, Brain Res., 100:235

    PubMed  Google Scholar 

  • Hökfelt, T., Eide, R., Johansson, O., Luft, R., and Nilsson, G., 1976, Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat, Neuroscience, 1:131

    PubMed  Google Scholar 

  • Jessell, T., Tsunoo, A., Kanazawa, I., and Otsuka, M., 1979, Substance P: depletion in the dorsal horn of rat spinal cord after section of the peripheral processes of primary sensory neurons, Brain Res., 168:247

    PubMed  CAS  Google Scholar 

  • Johnson, L. R., and Westrum, L. E., 1980, Brainstem degeneration patterns following tooth extractions: visualization of dental and periodontal afferents, Brain Res., 194:489

    PubMed  CAS  Google Scholar 

  • Johnson, L. R., Westrum, L. E., and Canfield, R. C., 1983, Ultrastructural study of transganglionic degeneration following dental lesions, Exp. Brain Res., 52:226

    PubMed  CAS  Google Scholar 

  • Katzman, R, Björklund, A., Owman, Ch., Stenevi, U., and West, K. A., 1971, Evidence for regenerative axon sprouting of central catecholamine neurons in rat mesencephalon following electrolytic lesions, Brain Res., 25:579

    PubMed  CAS  Google Scholar 

  • Kessler, J. A., and Black, I. B., 1981, Nerve growth factor stimulates development of substance P in the embryonic spinal cord, Brain Res., 208:135

    PubMed  CAS  Google Scholar 

  • Knyihár, E., and Csillik, B., 1976a, Representation of cutaneous afferents by fluoride-resistant acid phosphatase (FRAP)-active terminals in the rat substantia gelatinosa Rolandi, Acta neurol. scand., 53:217

    Google Scholar 

  • Knyihár, E., and Csillik, B., 1976b, Effect of peripheral axotomy on the fine structure and histochenistry of the Rolando substance: degenerative atrophyj of central processes of pseudounipolar cells, Exp. Brain Res., 26:73

    Google Scholar 

  • Knyihár, E., and Csillik, B., 1976c, Axonal labyrinths in the rat spinal cord. A consequence of degenerative atrophy, Acta Biol. Acad. Sci. Hung., 27:299

    Google Scholar 

  • Knyihár, E., and Csillik, B., 1977, Regional distribution of acid phosphatase-positive axonal systems in the rat spinal cord and medulla, representing central terminals of cutaneous and visceral nociceptive neurons, J. Neural Transmiss., 40:227

    Google Scholar 

  • Knyihár-Csillik, E., Bezzegh, A., Böti, Zs., and Csillik, B., 1986, Thiamine monophosphatase: A genuine marker for tansganglionic regulation of primary sensory neurons, J. Histochem. Cytochem., 34:363

    PubMed  Google Scholar 

  • Knyihár-Csillik, E., and Csillik, B., 1981, FRAP: Histochemistry of the primary nociceptive neuron, Progr. Histochem. Cytochem., 14:1

    Google Scholar 

  • Knyihár-Csillik, E., Rakic, P., and Csillik, B., 1985, Fine structure of growth cones in the upper dorsal horn of the adult spinal cord in the course of reactive synaptoneogenesis, Cell Tiss. Res., 239:633

    Google Scholar 

  • Knyihár-Csillik, E., Rakic, P., and Csillik, B., 1986, Reactive synaptoneogenesis in the upper dorsal horn of the adult primate: regenerative or collateral sprouting?, in: “Development and Plasticity of the mammalian spinal cord,” M. Goldberger, A. Gorio, and M. Murray, eds., Fidia Res. Series, Vol. III, Liviana Press, Padova

    Google Scholar 

  • Knyihár-Csillik, E., Rakic, P., and Csillik, B., 1987, Transganglionic degenerative atrophy in the substantia gelatinosa of the spinal cord after peripheral nerve transection in rhesus monkeys, Cell Tiss. Res., 247:599

    Google Scholar 

  • Knyihár-Csillik, E., Rakic, P., and Csillik, B., 1987, Transganglionic degenerative atrophy in the substantia gelatinosa of the spinal cord after peripheral nerve transection in rhesus monkeys, Cell Tiss. Res., 247:599

    Google Scholar 

  • Kovacs, A., and Ferencsik, M., 1986, Mapping of spinal projection of primary nociceptive neurones in the rat, Acta Morph. Hung., 34:187

    CAS  Google Scholar 

  • Kreutzberg, G. W., 1985, The motoneuron and its microenvironment responding to axotomy, in: “Neural transplantation and regeneration,” G. D. Das and R. B. Wallace, eds., Springer-Verlag, New York: 271

    Google Scholar 

  • Léránth, Cs., Csillik, B., and Knyihár-Csillik, E., 1984, Depletion of substance P and somatostatin in the upper dorsal horn after blockade of axoplasmic transport, Histochem., 81:391

    Google Scholar 

  • Ljungdahl, A., Hökfelt, T., and Nilsson, G., 1978, Distribution of substance P-like immunoreactivity in the central nervous system of the rat, Neuroscience, 3:861

    PubMed  CAS  Google Scholar 

  • Lynch, G., Matthews, D. A., Mosko, S., Parks, T., and Cotman, C. W., 1972, Induced acetylcholinesterase-rich layer in rat dentate gyrus following entorhinal lesions, Brain Res., 42:311

    PubMed  CAS  Google Scholar 

  • Lynch, G., Stanfield, B., and Cotman, C. W., 1973, Development differences in postlesion axonal growth in the hippocampus, Brain Res., 59:155

    PubMed  CAS  Google Scholar 

  • Majumdar, S., Mills, E., and Smith, P. G., 1983, Degenerative and regenerative changes in central projections of glossopharyngeal and vagal sensory neurons after peripheral axotomy in cats: a structural basis for central reorganization of arterial chemoreflex pathways, Neuroscience, 10:841

    PubMed  CAS  Google Scholar 

  • Mayer, N., Lembeck, F., Goedert, M., and Otten, U., 1982, Effects of antibodies against nerve growth factor on the postnatal development of substance P — containing sensory neurons, Neurosci. Lett., 29:47

    PubMed  CAS  Google Scholar 

  • McGregor, G. P., Gibson, S. J., Sabate, I. M., Blank, M. A., and Christofìdes, N. D., 1984, Effect of peripheral nerve section and nerve crush on spinal cord neuropeptides in the rat; increased VIP and PHI in the dorsal horn, Neuroscience, 13:207

    PubMed  CAS  Google Scholar 

  • Mihaly, A., Pór, I., Bencze, Gy., and Csillik, B., 1980, Effects of perineurally applied cytostatic, cytotoxic and chelating agents upon peripheral and central processes of primary nociceptive neurons, Z. mikrosk.-anat. Forsch., 94:531

    PubMed  CAS  Google Scholar 

  • Nadelhaft, I., 1984, The sessile drop method immunohistochemical processing of unmounted sections of nervous tissue, J. Histochem. Cytochem., 32:1344

    PubMed  CAS  Google Scholar 

  • Nagy, J. I., and Hunt, S. P., 1982, Fluoride-resistant acid phosphatase-containing neurones in dorsal root ganlgia are separate from those containing substance P or somatostatin, Neurosci., 378:188

    Google Scholar 

  • Ogawa, K., Sakai, M., and Inomata, K., 1982, Recent findings on ultracytochemistry of thiamin phosphatases, Ann. N. Y. Acad. Sci., 378:188

    PubMed  CAS  Google Scholar 

  • Pór, I., 1985, Alterations of dorsal root potential in the course of tranganglionic degenerative atrophy, Acta Physiol. Hung., 65:255

    PubMed  Google Scholar 

  • Prestige, M. C., 1967, The control of cell number in the lumbar spinal ganglia during the development of Xenopus laevistadpoles, J. Embryol. Morph., 17:453

    CAS  Google Scholar 

  • Risling, M., Aldskogius, H., Hildebrand, C., and Remahl, S., 1983, Effects of sciatic nerve resection on L7 spinal root and dorsal root ganglia in adult cats, Exp. Neurol., 82:568

    PubMed  CAS  Google Scholar 

  • Seybold, V., and Eide, R., 1980, Immunohistochemical studies of peptidergic neurons in the dorsal horn of the spinal cord, J. Histochem. Cytochem., 28:367

    PubMed  CAS  Google Scholar 

  • Shehab, S. A. S., and Atkinson, M. E., 1986, Vasoactive intestinal polypeptide (VIP) increases in the spinal cord after peripheral axotomy of the sciatic nerve originate from primary afferent neurons, Brain Res., 372:3

    Google Scholar 

  • Szuecs, A., Csillik, B., and Knyihár-Csillik, E., 1983, Functional impairment of the primary nociceptive analyzer in the course of transganglionic degenerative atrophy, Acta Biol. Acad. Sci. Hung., 34:267

    Google Scholar 

  • Szönyi, G., Knyihár, E., and Csillik, B., 1979, Extra-lysosomal fluoride-resistant acid phosphatase active neuronal system subserving nociciption in the rat cornea, Z. mikrosk.-anat. Forsch., 93:974

    PubMed  Google Scholar 

  • Tajti, J., Fischer, J., Knyihár-Csillik, E., and Csillik, B., 1988, Tranganglionic regulation and fine structural localization of lectin-reactive carbohydrate epitopes in primary sensory neurons of the rat, Histochemistry, 88:213

    PubMed  CAS  Google Scholar 

  • Tajti, J., Fischer, J., Knyihár-Csillik, E., and Csillik, B., 1988, Tranganglionic regulation and fine structural localization of lectin-reactive carbohydrate epitopes in primary sensory neurons of the rat, Histochemistry, 88:213

    PubMed  CAS  Google Scholar 

  • Takahashi, T., and Otsuka, M., 1975, Regional distribution of substance P in the spinal cord and nerve roots of the cat and the effect of dorsal root section, Brain Res., 87:1

    PubMed  CAS  Google Scholar 

  • Tessler, A., Hirnes, B. T., Krieger, N. R., Murray, M., and Goldberger, M. E., 1985, Sciatic nerve transection produces death of dorsal root ganglion cells and reversible loss of substance P in spinal cord, Brain Res., 332:209

    PubMed  CAS  Google Scholar 

  • Unsicker, K., Skaper, S. D., and Varon, S., 1985, Developmental changes in the responses of rat chromaffine cells to neurotrophic and neurite-promoting factors, Develop. Biol., 111:425

    PubMed  CAS  Google Scholar 

  • Wall, P. D., Fitzgerald, M., and Gibson, S. J., 1981a, The response of rat spinal cord cells to unmyelinated afferents after peripheral nerve section and after changes in substance P levels, Neuroscience, 6:2205

    CAS  Google Scholar 

  • Wall, P. D., 1981b, The nature and origins of plasticity in adult spinal cord, in: “Spinal cord sensation,” A. G. Brown and M. Réthelyi, eds., Scottish Academic Press, Edinburgh: 297

    Google Scholar 

  • Wall, P. D., Mills, R., Fitzgerald, M., and Gibson, S. J., 1982a, Chronic blockade of sciatic nerve transmission by tetrodotoxin does not produce central changes in the dorsal horn of the spinal cord of the rat, Neurosci. Lett., 30:315

    CAS  Google Scholar 

  • Wall, P. D., 1982b, The effect of peripheral nerve lesions and of neonatal capsaicin in the rat on primary afferent depolarization, J. Physiol. (Lond.), 329:21

    CAS  Google Scholar 

  • Wall, P. D., and Devor, M., 1981, The effect of peripheral nerve injury on dorsal root potentials and on transmission of afferent signals into the spinal cord, Brain Res., 209:95

    PubMed  CAS  Google Scholar 

  • Westrum, L. E., and Canfield, R. C., 1977, Light and electron microscopy of degeneration in the brain stem spinal trigeminal nucleus following tooth pulp removal in adult cats, in: “Pain in trigeminal region,” D. J. Anderson and B. Matthews, eds., Elsevier, Amsterdam-New York: 171

    Google Scholar 

  • Westrum, L. E., Johnson, L. R., and Canfield, R. C, 1984, Ultrastructure of transganglionic degeneration in brain stem trigeminal nuclei during normal primary tooth exfoliation and permanent tooth eruption in the cat, J. Comp. Neurol., 230:198

    PubMed  CAS  Google Scholar 

  • Woolf, C. J., and Wall, P. D., 1982, Chronic peripheral nerve section diminished the primary afferent A-fibre mediated inhibition of rat dorsal horn neurones, Brain Res., 242:77

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Knyihár-Csillik, E., Csillik, B. (1990). Structural, Functional and Cytochemical Plasticity of Primary Afferent Terminals in the Upper Dorsal Horn. In: Zenker, W., Neuhuber, W.L. (eds) The Primary Afferent Neuron. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0579-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0579-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7875-7

  • Online ISBN: 978-1-4613-0579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics