Advertisement

Ultrastructure of Primary Afferent Terminals in the Spinal Cord

  • M. Réthelyi

Abstract

Primary afferent fibers (PAF) arborize and terminate in the spinal gray matter with characteristic arborizations and terminal structures. The arborizations blend into the neuropil, i.e., they are tangential in lamina I, sagittally oriented sheets in laminae II and III, discs oriented in the transverse plane in the intermediate zone as well as in the ventral horn, and narrow rostro-caudally oriented bundles in Clarke’s column.

Keywords

Ventral Horn Superficial Dorsal Horn Substantia Gelatinosa Dendritic Shaft Lumbosacral Spinal Cord 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bannatyne, B. A., Maxwell, D. J., Fyffe, R. E., and Brown, A. G., 1984, Fine structure of primary afferent axon terminals of slowly adapting cutaneous receptors in the cat, Quart J. Exp. Physiol., 69:547–557Google Scholar
  2. Barber, R. P., Vaughn, J. E., Saito, K., McLaughlin, B. J., and Roberts, E., 1978, GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord, Brain Res., 141:35–55PubMedCrossRefGoogle Scholar
  3. Beattie, M. S., Bresnahan, J. C., and King, J. S., 1978, Ultrastructural identification of dorsal root primary afferent terminals after anterograde filling with horseradish peroxidase, Brain Res., 153:127–134PubMedCrossRefGoogle Scholar
  4. Bodian, D, 1966, Synaptic types on spinal motoneurons: an electron microscopic study, Bull. Johns Hopkins Hosp., 119:16–45Google Scholar
  5. Brown, A. G., 1981, “Organization in the spinal cord,” Springer Verlag, Berlin-Heidelberg New York.Google Scholar
  6. Burgess, P. R., and Perl, E. R., 1967, Myelinated afferent fibres responding specifically to noxious stimulation of the skin, J. Physiol. (Lond.), 190:541–562Google Scholar
  7. Carlton, S. M., McNeill, D. L., Chung, K., and Coggeshall, R.E., 1988, Organization of calcitonin gene-related peptide-immunoreactive terminals in the primate dorsal horn, J. Comp. Neurol., 276:527–536PubMedCrossRefGoogle Scholar
  8. Coimbra, A., Sodre-Borges, B. P., Magalhaes M. M., 1974, The substantia gelatinosa olandi of the rat. Fine structure, cytochemistry (acid phosphatase) and changes after dorsal root section, J. Neurocytol., 3:199–217PubMedCrossRefGoogle Scholar
  9. Conradi, S., 1969, Ultrastructure and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the adult cat, Acta Physiol. Scand., Suppl. 332:5–48Google Scholar
  10. Conradi, S., Culheim, S., Gollvik D., and Kellerth, J. O., 1983, Electron microscopic observations on the synaptic contacts of group Ia muscle spindel afferents in the cat lumbosacral spinal cord, Brain Res., 265:31–39PubMedCrossRefGoogle Scholar
  11. Gobel, S., 1974, Synaptic organization of the substantia gelatinosa glomeruli in the spinal trigeminal nucleus of the adult cat, J. Neurocytol., 3:219–243PubMedCrossRefGoogle Scholar
  12. Ellis, L. C., and Rustioni, A., 1981, A correlative HRP, Golgi and EM study of the intrinsic organization of the feline dorsal column nuclei, J. Comp. Neurol., 197:341–367PubMedCrossRefGoogle Scholar
  13. Fyffe, R. E. W., Cheema, S. S., Light, A. R., and Rustioni, A., 1985, The organization of neurons and afferent fibers in the cat cuneate nucleus, in: Development, Organization and Processing in Somatosensory Pathways, M. Rowe and W. D. Willis, Jr., ed., Alan R. Liss, New York, pp 163–173Google Scholar
  14. Fyffe, R. E. W., and Light, A. R, 1984, The ultrasructure of group la afferent fiber synapses in the lumbosacral spinal cord of the cat, Brain Res., 300:201–209PubMedCrossRefGoogle Scholar
  15. Heimer, L., and Wall, P. D., 1968, The dorsal root distribution to the substantia gelatinosa of the rat with a note on the distribution in the cat, Exp. Brain Res., 6:89–99PubMedCrossRefGoogle Scholar
  16. Honda, C. N., Réthelyi, M., and Petrusz, P., 1982, Preferential immunohistochemical localization of vasoactive intestinal polypeptide (VIP) in the sacral spinal cord of the cat: light and electron microscopic observations, J. Neuroscience, 3:2183–2196Google Scholar
  17. Imai, Y., and Kusama, T., 1969, Distribution of the dorsal root fibers in the cat. An experimental study with the Nauta method, Brain Res., 13:338–359PubMedCrossRefGoogle Scholar
  18. Jancsó, G., and Kiraly, E., 1980, Distribution of chemosensitive primary sensory afferents in the central nervous system of the rat, J. Comp. Neurol., 190:781–792PubMedCrossRefGoogle Scholar
  19. Knyihár, E., Laszlo I., and Tornyos S., 1974, Fine structure and fluoride resistant acid phosphatase activity of electron dense sinusoid terminals in the substantia gelatinosa Rolandi of the rat after dorsal root transection, Exp. Brain Res., 19:529–544PubMedCrossRefGoogle Scholar
  20. Knyihár-Csillik, E., Csillik, B., and Rakic P., 1982, Periterminal synaptology of primary afferents in the primate substantia gelatinosa, J. Comp. Neurol., 210:376–399PubMedCrossRefGoogle Scholar
  21. LaMotte, C., 1977, Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord, J. Comp. Neurol., 172:529–561PubMedCrossRefGoogle Scholar
  22. Lasek, R., Joseph B. S., and Whitlock D. G., 1968, Evaluation of a radioautographic neuroanatomical tracing method, Brain Res., 8:319–336PubMedCrossRefGoogle Scholar
  23. Light, A. R., and Perl, E. R., 1979, Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers, J. Comp. Neurol., 186:133–150PubMedCrossRefGoogle Scholar
  24. Maxwell, D. J., and Bannatyne, B. A., 1983, Ultrastructure of muscle spindle afferent terminations in lamina VI of the cat spinal cord, Brain Res., 288:297–301PubMedCrossRefGoogle Scholar
  25. Maxwell, D. J., Bannatyne, B. A., Fyffe R. E. W., and Brown, A. G., 1982, Ulrastructure of hair follicle afferent fiber terminations in the spinal cord of the cat, J. Neurocytol., 11:571–582PubMedCrossRefGoogle Scholar
  26. Maxwell, D. J., Bannatyne, B. A., Fyffe R. E., and Brown, A. G., 1984a, Fine structure of primary afferent axon terminals projecting from rapidly adapting mechanoreceptors of the toe and foot pads of the cat, Quart J. Exp. Physiol., 69:381–392Google Scholar
  27. Maxwell, D. J., Fyffe, ER. E. W., and Brown, A. G., 1984b, Fine structure of normal and degenerating primary afferent boutons associated with characterized spinocervical tract neurons in the cat, Neuroscience, 12:151 –163CrossRefGoogle Scholar
  28. Maxwell, D. J., and Noble, R., 1987, Relatiosnships between hair follicle afferent terminations and glutamic acid decarboxyalse -containing boutons in the cat’s spinal cord, Brain Res., 408:308–312PubMedCrossRefGoogle Scholar
  29. McLaughlin, B. J., 1972, Dorsal root projections to the motor nuclei in the cat spinal cord, J. Comp. Neurol., 144:461–474CrossRefGoogle Scholar
  30. Ralston, H. J. III., 1968, The fine structure of neurons in the dorsal horn of the cat spinal cord, J. Comp. Neurol., 132:275–301PubMedCrossRefGoogle Scholar
  31. Ralston, H. J. III., 1979, The fine structure of laminae I, II and III of the Macaque spinal cord, J. Comp. Neurol., 184:619–641PubMedCrossRefGoogle Scholar
  32. Ralston, H. J. III., Ralston, D. D., 1979a, The distribution of dorsal root axons in laminae I, II and III of the Macaque spinal cord: a quntitqtive electron microscopic study, J. Comp. Neurol., 184:643–684CrossRefGoogle Scholar
  33. Ralston, H. J., and Ralston, D. D., 1979b, Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography, J. Neurocytol., 8:151–166CrossRefGoogle Scholar
  34. Ralston H. J. III., Light, A. R, Ralston D. D., and Perl, E. R., 1984, Morphology and synaptic relationships of physiologically identified low-threshold dorsal root axons stained with intraaxonal horseradish peroxidase in the cat and monkey, J. Neurophysiol., 51:777–792PubMedGoogle Scholar
  35. Réthelyi, M., 1970, Ultrastructural synaptology of Clarke’s column, Exp. Brain Res., 11:159–174PubMedGoogle Scholar
  36. Réthelyi, M., 1976, Central core in the spinal grey matter, Acta morph. Acad. Sci. hung., 24:63–70Google Scholar
  37. Réthelyi, M., 1977, Preterminal and terminal axon arborizarions in the substantia gelatinosa of cat’s spinal cord, J. Comp. Neurol., 172:511–528PubMedCrossRefGoogle Scholar
  38. Réthelyi, M., Light A. R., and Perl, E.R., 1982, Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers, J. Comp. Neurol., 207:381–393PubMedCrossRefGoogle Scholar
  39. Réthelyi, M., and Szentágothai, J., 1969, The large synaptic complexes of the substantia gelatinosa, Exp. Brain Res., 7:258–274PubMedCrossRefGoogle Scholar
  40. Réthelyi, M., Trevino, D. L., and Perl, E. R., 1979, Distribution of primary afferent fibers within the sacrococcygeal dorsal horn: An autoradiographic study, J. Comp. Neurol., 185:603–622PubMedCrossRefGoogle Scholar
  41. Rexed, B., 1952, The cytoarchitectonic organization of the spinal cord in the cat, J. Comp. Neurol., 96:415–466CrossRefGoogle Scholar
  42. Saito, K., 1974, The synaptology and cytology of the Clarke cell in nucleus dorsalis of the cat: An electron microscopic study, J. Neurocytol., 3:179–197PubMedCrossRefGoogle Scholar
  43. Scheibel, M. E., Scheibel, A. B., 1968, Terminal axonal patterns in cat spinal cord. II. The dorsal horn, Brain Res., 9:32–58PubMedCrossRefGoogle Scholar
  44. Schimert, J., 1939, Das verhalten des Hinterwurzelkollateralen im Ruckenmark, Z. Anat. Entwickl., 109:665–687CrossRefGoogle Scholar
  45. Semba, K., Masarachia, P., Malamed, S., Jacquin, M., Harris, S., Yang G., and Egger, M.D., 1983, An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat, J. Ccom. Neurol., 221:466– 481CrossRefGoogle Scholar
  46. Semba, K,. Masarachia, P., Malamed, S., Jacquin, M., Harris, S., Yang G., and Egger, M. D., 1984, Ultrastructure of pacinian corpuscle primary afferent terminals in the cat spinal cord, Brain Res., 302:135–150PubMedCrossRefGoogle Scholar
  47. Semba, K., Masarachia, P., Malamed, S., Jacquin, M., Harris, S., Yang G., and Egger, M. D., 1985, An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord, J. Comp. Neurol., 232:229–240PubMedCrossRefGoogle Scholar
  48. Sprague, J. M., Ha, H., 1964, The terminal fields of dorsal root fibers in the lumbosacral spinal cord of the cat and the dendritic organization of the motor nuclei in: Organization of the spinal Cord, J. C. Eccles, J. P. Schade, ed., Progr. Brain Res., 11:120–152CrossRefGoogle Scholar
  49. Sterling, R., Kuypers, H. G. J. M., 1967, Anatomical organization of the brachial spinal cord of the cat. I. The distribution of dorsal root fibers, Brain Res., 4:1–15PubMedCrossRefGoogle Scholar
  50. Sternberger, L. A., 1986, “Immunocytochemistry,” Churchill Livingstone, New YorkGoogle Scholar
  51. Sugiura, Y., Lee, C. L., and Perl, E. R., 1986, Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin, Science, 234:358–361PubMedCrossRefGoogle Scholar
  52. Szentágothai, J., and Albert, A., 1955, The synaptology of Clarke’s column. Acta Morph. Acad. Sci. Hung., 5:43–51Google Scholar
  53. Todd, A. J., 1988, Electron microscope study of Golgi-stained cells in lamina II of the rat spinal dorsal horn, J. Comp. Neurol., 275:145–157PubMedCrossRefGoogle Scholar
  54. Walberg, F., 1966, The fine structure of the cuneate nucleu in normal cats and following interruption of afferent fibers. An electron microscopical study with particular refernce to findings made in Glees and Nauta sections, Exp. Brain Res., 2:107–128PubMedCrossRefGoogle Scholar
  55. Walmsley, B., Wieniawa-Narkiewicz, E., and Nicol, M. J., 1985, The ultrastructural basis for synaptic transmission between primary muscle afferents and neurons in Clarke’s column of the cat, J. Neurosci., 5:2095–2106PubMedGoogle Scholar
  56. Walmsley, B., Wieniawa-Narkiewitz, E., and Nicol, M. J., 1987, Ultrasructural evidence related to presynaptic inhibition of primary muscle afferents in Clarke’s column of the cat, J. Neurosci., 7:236–243PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. Réthelyi
    • 1
  1. 1.Second Department of AnatomySemmelweis University Medical SchoolBudapestHungary

Personalised recommendations