Skip to main content

Neuropeptides in Primary Afferent Neurons

  • Chapter
The Primary Afferent Neuron

Abstract

Traditionally, the primary sensory neurons, having their perikarya in the spinal or cranial sensory ganglia with processes directed towards the periphery and the central nervous system, have been regarded to function as receptive and afferent systems which reflexly activate central effector systems.1 This, however, does not apply to the small diameter primary afferents as suggested by the observation made about a century ago that antidromic stimulation of transected dorsal roots or sensory nerves caused vasodilatation and inflammatory signs in the skin.2,3 The novel concept which has been confirmed by many investigators ascribes to small diameter (particularly unmyelinated C) primary sensory neurons dual central afferent as well as peripheral local effector and axon-reflex functions.3,4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. E. Salt and R. G. Hill, Neurotransmitter candidates of somatosensory primary afferent fibres, Neuroscience 10:1083 (1983).

    Article  PubMed  CAS  Google Scholar 

  2. G. Gaertner, Über den Verlauf der Vasodilatoren, Klin. Wschr. 51:980 (1889).

    Google Scholar 

  3. P. Holzer, Local effector functions of capsaicin- sensitive sensory nerve endings: involvement of tachykinins, calcitonin, gene-related peptide and other neuropeptides, Neuroscience 24:739 (1988).

    Article  PubMed  CAS  Google Scholar 

  4. C. A. Maggi and A. Meli, The sensory-efferent function of capsaicin-sensitive sensory neurons, Gen. Pharmac. 19:1 (1988).

    CAS  Google Scholar 

  5. H. H. Dale, Pharmacology and nerve endings, Proc. R. Soc. Med. 28:319 (1935).

    PubMed  CAS  Google Scholar 

  6. U. S. von Euler, and J. H. Gaddum, An unidentified depressor substance in certain tissue extracts, J. Physiol. (Lond.) 72:74 (1931).

    Google Scholar 

  7. M. M. Chang and S. E. Leeman, Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterisation as substance P, J. biol. Chem. 245:4784 (1970).

    PubMed  CAS  Google Scholar 

  8. F. Lembeck, Zur Frage der zentralen Übertragung afferenter Impulse — III. Mitteilung. Das Vorkommen und die Bedeutung der Substanz P in den dorsalen Wurzeln des Rückenmarks, Arch. exp. Path. Pharmak. 219:197 (1953).

    Article  CAS  Google Scholar 

  9. N. Jancsó, A. Jancsó-Gabor, and J.Szolcsanyi, Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin, Br. J. Pharmac. 31:138 (1967).

    Google Scholar 

  10. F. Lembeck, Columbus, capsicum and capsaicin: past, present and future, ActaPhysiol. Hungarica 69:265 (1987).

    CAS  Google Scholar 

  11. S. H. Buck and T. F. Burks, The neuropharmacology of capsaicin: review of some recent observations, Pharmacol. Reviews 38:179 (1986).

    CAS  Google Scholar 

  12. W. Zieglgänsberger, Central control of nociception, in: “Handbook of Physiology — The Nervous System IV,” V.B. Mountcastle, F.E. Bloom, and S.R. Geiger eds. Williams & Wilkins, Baltimore (1986).

    Google Scholar 

  13. J. M. Besson and A. Chaouch, Peripheral and spinal mechanisms of nociception, Physiol. Rev. 67:67 (1987).

    PubMed  CAS  Google Scholar 

  14. T. M. Jessell, Nociception, in: “Brain Peptide,” D. T. Krieger, M. J. Brownstein, and J. B. Martin, eds., J. Wiley & Sons, N.Y., Chichester, Brisbane (1983).

    Google Scholar 

  15. J. C. Foreman, Peptides and neurogenic inflammation, British Med. Bull. 43:386 (1987).

    CAS  Google Scholar 

  16. M. K. Warden, and W. S. Young, III, Distribution of cells containing mRNAs encoding substance P and neurokinin B in the rat central nervous system, J. Comp. Neurol. 272:90 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. J. E. Krause, J. M. Chirgwin, M. S. Carter, Z. S. Xu, and A. D. Hershey, Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A, Proc. Natl. Acad. Sci. USA 84:881 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. Y. Masu, H. Tamaki, Y. Yokota, and S. Nakanishi, Tachykinin precursors and receptors: molecular genetic studies, Regulatory Peptides 22:9 (1988).

    Article  CAS  Google Scholar 

  19. T. Hökfelt, D. Millhorn, K. Seroogy, Y. Tsuruo, S. Ceccatelli, B. Lindh, B. Meister, T. Melander, M. Schalling, T. Bartfai, and L. Terenius, Coexistence of peptides with classical neurotransmitters, Experientia 43:768 (1987).

    Article  PubMed  Google Scholar 

  20. 20.F. Lembeck, The 1988 Ulf von Euler Lecture, Acta Physiol. Scand. 133:435 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. M. J. Millan, Multiple opioid systems and pain, Pain 27:303 (1986).

    Article  PubMed  CAS  Google Scholar 

  22. M. A. Ruda, G. J. Bennett, and R. Dubner, Neurochemistry and neural circuitry in the dorsal horn, Prog. Brain Res. 66:219 (1986).

    Article  PubMed  CAS  Google Scholar 

  23. A. C. Cuello, Peptides as neuromodulators in primary sensory neurons, Neuropharmacol. 26:971 (1987).

    Article  CAS  Google Scholar 

  24. S. P. Hunt, Cytochemistry of the spinal cord, in: “Chemical Neuroanatomy,” P. C. Emson, ed., Raven Press, N.Y. (1983).

    Google Scholar 

  25. M. J. Millan, and A. Herz, The endocrinology of the opioids, Neurobiology 26:1 (1985).

    PubMed  CAS  Google Scholar 

  26. A. Goldstein, Biology and chemistry of the dynorphin peptides, in: “The peptides,” S. Udenfriend and J. Meienhofer, eds., Academic Press, N.Y. (1984).

    Google Scholar 

  27. E. Weihe, D. Nohr, W. Hartschuh, B. Gauweiler, and T. Fink, Multiplicity of opioidergic pathways related to cardiovascular innervation: Differential contribution of all three opioid precursors, in: “Opioid Peptides and Blood Pressure Control,” K.O. Stumpe, K. Kraft, and A.I. Faden, eds., Springer Verlag Heidelberg (1988).

    Google Scholar 

  28. F. Berkenbosch, J. Schipper, and F. J. H. Tilders, Corticotropin-relaeasing factor immunostaining in the rat spinal cord and medulla oblongata: an unexpected form of cross-reativity with substance P, Brain Res. 399:87 (1986).

    Article  PubMed  CAS  Google Scholar 

  29. G. Ju, T. Hökfelt, J. A. Fischer, P. Frey, J. F. Rehfeld, and G. J. Dockray, Does cholecystokinin- like immunoreactivity in rat primary sensory neurons represent calcitonin gene-related peptide? Neurosci. Lett. 68:305 (1986).

    Article  PubMed  CAS  Google Scholar 

  30. E. Weihe, D. Nohr, and W. Hartschuh, Immunohistochemical evidence for a co-transmitter role of opioid peptides in primary sensory neurons. Progr. Brain Res. 74:189 (1988).

    Article  CAS  Google Scholar 

  31. G. Ju, T. Hökfelt, E. Brodin, J. Fahrenkrug, J. A. Fischer, P. Frey, R. P. Eide, and J. C. Brown, Primary sensory neurons of the rat showing calcitonin gene-related peptide immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive ganglion cells, Cell Tissue Res. 247:417 (1987).

    Article  PubMed  CAS  Google Scholar 

  32. E. Weihe, D. Nohr, B. Gauweiler, T. Fink, E. Nowak, S. Konrad, Immunohistochemical evidence for a diversity of opioid coding in peripheral sympathetic, parasympathetic and sensory neurons: a general principle of prejunctional opioid autoinhibition? in: “Regulatory Role of Opioid Peptides Symposium to the Second World Congress of Neuroscience, Budapest,” P. Illes, and C. Farsang, eds., VCH Verlagsgesellschaft Weinheim, N.Y. (1988).

    Google Scholar 

  33. A. I. Basbaum, L. Cruz, and E. Weber, Immunoreactive dynorphin B in sacral primary afferent fibers of the cat, J. Neurosci. 6:127 (1986).

    PubMed  CAS  Google Scholar 

  34. J. Price, An immunohistochemical and quantitative examination of dorsal root ganglion neuronal subpopulations, J. Neurosci. 5:2051 (1985).

    PubMed  CAS  Google Scholar 

  35. M. Kawatani, J. Nagel, and W. C. de Groat, Identification of neuropeptides in pelvic and pudendal nerve afferent pathways to the sacral spinal cord of the cat, J. Comp. Neurol. 249:117 (1986).

    Article  PubMed  CAS  Google Scholar 

  36. M. A. Kai-Kai, B. H. Anderton, and P. Keen, A quantitative analysis of the interrelationships between subpopulations of rat sensory neurons containing arginine vasopressin or oxytocin and those containing substance P, fluoride-resistant acid phosphatase or neurofilament protein, Neuroscience 18:475 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. M. M. Tuchscherer, and V. S. Seybold, Immunohistochemical studies of substance P, cholecystokinin-octapeptide and somatostatin in dorsal root ganglia of the rat, Neuroscience 14:593 (1985).

    Article  PubMed  CAS  Google Scholar 

  38. U. Hoheisel, and S. Mense, Observations on the morphology of axons and somata of slowly conducting dorsal root ganglion cells in the cat, Brain Res.423:269 (1987).

    Article  PubMed  CAS  Google Scholar 

  39. U. Hoheisel, and S. Mense, Non-myelinated afferent fibres do not originate exclusively from the smallest dorsal root ganglion cells in the cat, Neurosci. Lett. 72:153 (1986).

    Article  PubMed  CAS  Google Scholar 

  40. N. Réthelyi, P. K. Lund, E. R. Perl, Peptide precursor mRNAs in the primary sensory neurons, Neuroscience 22, Suppl. S15 (1987).

    Google Scholar 

  41. M. J. Iadarola, and G. Draisci, Elevation of spinal cord dynorphin mRNA compared to dorsal root ganglion peptide mRNSAs during peripheral inflammation, in: “The arthritic rat as a model of clinical pain?,” J. M. Besson and G. Guilbaud, Excerpta Medica, Amsterdam, New York, Oxford (1988).

    Google Scholar 

  42. S. J. Gibson, J. M. Polak, A. Giaid, Q. A. Hamid, S. Kar, P. M. Jones, P. Denny, S. Legon, S. G. Amara, R. K. Craig, S. R. Bloom, R. J. A. Penketh, C. Rodek, N. B. N. Ibrahim, and A. Dawson, Calcitonin gene- related peptide messenger RNA is expressed in sensory neurons of the dorsal root ganglia and also in spinal motoneurones in man and rat, Neurosci. Lett. 91:283 (1988).

    Article  PubMed  CAS  Google Scholar 

  43. F. Grunditz, R Håkanson, F. Sundler, and R. Uddman, Neurokinin A and galanin in the thyroid gland: neuronal localization, Endocrinology 121:575 (1987).

    Article  PubMed  CAS  Google Scholar 

  44. A. Saria, R. Gamse, J. M. Lundberg, T. Hökfelt, E. Theodorsson-Norheim, J. Petermann, and J.A. Fischer, Co-existence of tachykinins and calcitonin gene-related peptide in sensory nerves in relation to neurogenic inflammation, in: “Tachykinin Antagonists,” R. Håkanson and F. Sundler, eds., Elsevier Science Publishers B.V. ( Biomedical Division) Amsterdam, New York, Oxford (1985).

    Google Scholar 

  45. E. Weihe, Peripheral innervation of the heart, in: “Silent Ischemia,” Th. von Arnim, ed., Steinkopff Verlag, Darmstadt (1987).

    Google Scholar 

  46. A Franco-Cereceda, H. Henke, J. M. Lundberg, J. B. Petermann, T. Hökfelt, and J. A. Fischer, Calcitonin gene-related peptide (CGRP) in capsaicin-sensitive substance P-immunoreactive sensory neurons in animals and man: distribution and release by capsaicin. Peptides 8:399 (1987).

    Article  PubMed  CAS  Google Scholar 

  47. F. Sundler, E. Brodin, E. Ekblad, R. Håkanson, R. Uddman, Sensory nerve fibers: distribution of substance P, neurokinin A and calcitonin gene- related peptide, in: “Tachykinin Antagonists,” R. Håkanson and F. Sundler, eds., Elsivier Science Publishers B.V. ( Biomedial Division), Amsterdam, New York, Oxford (1985).

    Google Scholar 

  48. K. Saito, S. Greenberg, and M. A. Moskowitz, Trigeminal origin of ß-preprotachykinin products in feline pial blood vessels, Neurosci. Lett. 76:69 (1987).

    Article  PubMed  CAS  Google Scholar 

  49. C. K. Helke and K. M. Hill, Immunohistochemical study of neuropeptides in vagal and glossopharyngeal afferent neurons in the rat, Neuroscience 26:539 (1988).

    Article  PubMed  CAS  Google Scholar 

  50. T. Grunditz, R. Håkanson, F. Sundler, and R. Uddman, Neuronal pathways to the rat thyroid revealed by retrograde tracing and immunocytochemistry, Neuroscience 24:321 (1988).

    Article  PubMed  CAS  Google Scholar 

  51. T. Green and G. J. Dockray, Characterization of the peptidergic afferent innervation of the stomach in the rat, mouse and guinea-pig, Neuroscience 25:181 (1988).

    Article  PubMed  CAS  Google Scholar 

  52. P. K. Mulderry, M. A. Ghatei, R. A. Spokes, P. M. Jones, A. M. Pierson, Q. A. Hamid, S. Kanse, S. G. Amara, J. M. Burrin, S. Legon, J. M. Polak, and S. R. Bloom, Differential expression of a-CGRP by primary sensory neurons and enteric autonomic neurons of the rat, Neuroscience 25:195 (1988).

    Article  PubMed  CAS  Google Scholar 

  53. V. Höllt, P. Sanchez-Blazquez, and J. Garzón, Multiple opioid ligands and receptors in the control of nociception, Phil. Trans R. Soc. Lond. B 308:299 (1985).

    Article  Google Scholar 

  54. E. Weihe, W. Hartschuh, E. Weber, Prodynorphin opioid peptides in small somatosensory primary afferents of guinea pig, Neurosci. Lett. 58:347 (1985).

    Article  PubMed  CAS  Google Scholar 

  55. E. Weihe, A. Leibold, D. Nohr, T. Fink, and B. Gauweiler, Co-existence of prodynorphin — opioid peptides and substance P in primary sensory afferents of guinea-pigs. Proc. Int. Narc. Res. Conf., San Francisco, NIDA Research Monograph 75:295 (1986).

    PubMed  CAS  Google Scholar 

  56. P. M. Sweetnam, J. H. Neale, J. L. Barker, and A. Goldstein, Localization of immunoreactive dynorphin in neurons cultured from spinal cord and dorsal root ganglia, Proc. Natl. Acad. Sci. USA 79:6742 (1982).

    Article  PubMed  CAS  Google Scholar 

  57. I. L. Gibbins, J. B. Furness, and M. Costa, Pathway- specific patterns of the co-existence of substance P, calcitonin gene-related peptide, cholecystokinin and dynorphin in neurons of the dorsal root ganglia of the guinea-pig, Cell Tissue Res. 248:417 (1987).

    Article  PubMed  CAS  Google Scholar 

  58. L. J. Botticelli, B. M. Cox, and A. Goldstein, Immunoreactive dynorphin in mammalian spinal cord and dorsal, Proc. Natl. Acad. Sci. USA 78:7783 (1981).

    Article  PubMed  CAS  Google Scholar 

  59. W. Kummer and C. Heym, Correlation of neuronal size and peptide immunoreactivity in the guinea-pig trigeminal ganglion, Cell Tissue Res. 245:657 (1986).

    Article  PubMed  CAS  Google Scholar 

  60. E. Weihe, D. Nohr, M. J. Millan, C. Stein, S. Müller, C. Gramsch, and A. Herz, Peptide neuroanatomy of adjuvant-induced arthritic inflammation in rat, Agents and Actions 25:255 (1988).

    Article  PubMed  CAS  Google Scholar 

  61. E. Weihe, M. J. Millan, V. Höllt, D. Nohr and A. Herz, Induction of the gen encoding prodynorphin by experimentally induced arthritis enhances staining for dynorphin in the spinal cord of rats, Neuroscience (in press) (1988).

    Google Scholar 

  62. M. A. Moskowitz, K. Saito, L. Brezina, and J. Dickson, Nerve fibers surrounding intracranial and extracranial vessels from human and other species contain dynorphin-like immunoreactivity, Neuroscience 23:731 (1987).

    Article  PubMed  CAS  Google Scholar 

  63. K. Uda, H. Okamura, H. Imura, C. Yanaihara, N. Yanaihara, and Y. Ibata, Distribution of human leumorphin-like immunoreactivity in the monkey spinal cord revealed by immunocytochemistry, Neurosci. Lett. 62:39 (1985).

    Article  PubMed  CAS  Google Scholar 

  64. R. Przewlocki, C. Gramsch, A. Pasi, and A. Herz, Characterization and localization of immunoreactive dynorphin, a-neo-endorphin, Met- enkephalin and substance P in human spinal cord, Brain Res. 280:95 (1983).

    Article  PubMed  CAS  Google Scholar 

  65. S. D. Logan, C. J. Lote, J. H. Wolstencroft, J. P. Gent, J. E. Fox, D. Hudson, and M. Szelke, Isolation, identification and synthesis of a novel tripeptide, methionyl-tyrosyl-lysine, from spinal cord and dorsal root ganglia of sheep, Neuroscience 5:1437 (1980).

    Article  PubMed  CAS  Google Scholar 

  66. P. Panula, M. Hadjiconstantinou, H.-Y. T. Yang, and E. Costa, Immunohistochemical localization of bombesin/gastrin-releasing peptide and substance P in primary sensory neurons, J Neurosci. 3:2021 (1983).

    PubMed  CAS  Google Scholar 

  67. K. Fuxe, L. F. Agnati, T. McDonald, V. Locatelli, T. Hökfelt, C.-J. Dalsgaard, N. Battistini, N. Yanaihara, V. Mutt, and A. C. Cuello, Immunohistochemical indications of gastrin releasing peptide — bombesin-like immunoreactivity in the nervous system of the rat. Codistribution with substance P-like immunoreactive nerve terminal systems and coexistence with substance P-like immunoreactivity in dorsal root ganglion cell bodies, Neurosci. Lett. 37:17 (1983).

    Article  PubMed  CAS  Google Scholar 

  68. J. D. Leah, A. A. Cameron, W. L. Kelly, and P. J. Snow, Coexistence of peptide immunoreactivity in sensory neurons of the cat, Neuroscience 16:683 (1985).

    Article  PubMed  CAS  Google Scholar 

  69. L. M. Kaplan, E. R. Spindel, K. J. Isselbacher, and W. W. Chin, Tissue-specific expression of the rat galanin gene, Proc. Natl. Acad. Sci. USA 85:1065 (1988).

    Article  PubMed  CAS  Google Scholar 

  70. A. Rökaeus and M. J. Brownstein, Construction of a porcine adrenal medullary cDNA library and nucleotide sequence analysis of two clones encoding a galanin precursor, Proc. Natl. Acad. Sci. USA 83:6287 (1986).

    Article  PubMed  Google Scholar 

  71. N. Itoh, K. Obata, N. Yanaihara, and H. Okamoto, Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27, Nature (Lond.) 304:547 (1983).

    Article  CAS  Google Scholar 

  72. S. A. S. Shehab and M. E. Atkinson, Vasoactive intestinal polypeptide (VIP) increases in the spinal cord after peripheral axotomy of the sciatic nerve originate from primary afferent neurons, Brain Res. 372:37 (1986).

    Article  PubMed  CAS  Google Scholar 

  73. M. Vecsernyés, I. Jojart, J. Jojart, F. Laczi, and F. A. Laszlo, Presence of chromatographically identified oxytocin in hguman sensory ganglia, Brain Res. 414:153 (1987).

    Article  PubMed  Google Scholar 

  74. D. Nohr, H. J. Zentel, R. M. Arendt, and E. Weihe, Atrial natriuretic factor-like immunoreactivitiy in spinal cord and in primary sensory neurons of spinal and trigeminal ganglia: interrelation with tachykinin immunoreactivity, (submitted).

    Google Scholar 

  75. E. Weihe, R. M. Arendt, D. Nohr, B. C. Liebisch and A. Herz, Immunohistochemical and radioimmunological evidence for the presence of ANF-like immunoreactivity in sensory afferents of guinea- pig, Neuroscience 22, Suppl. S788 (1987).

    Google Scholar 

  76. R. Jozsa, H. W. Korf, I. Merchenthaler, Growth hormone-releasing factor (GRF)-like immunoreactivity in sensory ganglia of the rat, Cell Tissue Res. 247:441 (1987).

    Article  PubMed  CAS  Google Scholar 

  77. J. Szolcsnyi, Antidromic vasodilatation and neurogenic inflammation, Agents and Actions 23:4 (1988).

    Article  Google Scholar 

  78. S. Saporta, Loss of spinothalamic tract neurons following neonatal treatment of rats with the neurotoxin capsaicin, Somatosensory Res. 4:153 (1986).

    Article  CAS  Google Scholar 

  79. H. Kannan, H. Yamashita, K. Kouizumi, and C. McC. Brooks, Neuronal activity of the cat supraoptic nucleus is influenced by muscle small diameter afferent (groups III and IV) receptors, Proc. Natl. Acad. Sci. USA 85:5744 (1988).

    Article  PubMed  CAS  Google Scholar 

  80. A. Öhlén, L. Lindbom, W., Staines, T. Hökfelt, A. C. Cuello, J. A. Fischer, and P. Hedqvist, Substance P and calcitonin gene-related peptide: immunohistochemical localisation and microvascular effects in rabbit skeletal muscle, Naun. Schmied. Arch. Pharmacol. 336:87 (1987).

    Google Scholar 

  81. G. P. McGregor, S. J. Gibson, I. M. Sabate, M. A. Blank, N. D. Christofides, P. D. Wall, J. M. Polak, and S. R. Bloom, Effect of peripheral nerve section and nerve crush on spinal cord neuropeptides in the rat; increased VIP and PHI in the dorsal horn, Neuroscience 13:207 (1984).

    Article  PubMed  CAS  Google Scholar 

  82. T. Hökfelt, Z. Wiesenfeld-Hallin, M. Villar, and T. Melander, Increase of galanin-like immunoreactivity in rat dorsal root ganglion cells after peripheral axotomy, Neurosci. Lett. 83:217 (1987).

    Article  PubMed  Google Scholar 

  83. K. Chung, W. T. Lee, and S. M. Carlton, The effects of dorsal rhizotomy and spinal cord isolation on calcitonin gene-related peptide-labeled terminals in the rat lumbar dorsal horn, Neurosci. Lett. 90:27 (1988).

    Article  PubMed  CAS  Google Scholar 

  84. T. Ogawa, I. Kanazawa, and S. Kimura, Regional distribution of substance P, neurokinin a and neurokinin ß in rat spinal cord, nerve rootsand dorsal root ganglia, and the effects of dorsal root section or spinal transection, Brain Res. 359:152 (1985).

    Article  PubMed  CAS  Google Scholar 

  85. R. M. Lindsay and A. J. Harmar, Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons, Nature 337:362 (1989).

    Article  PubMed  CAS  Google Scholar 

  86. M. M. Oblinger and R. J. Lasek, Axotomy-induced alterations in the synthesis and transport of neurofilaments and microtubules in dorsal root ganglion cells, J. Neurosci. 8:1747 (1988).

    PubMed  CAS  Google Scholar 

  87. D. Otto, K. Unsicker, and C. Grothe, Pharmacological effects of nerve growth factor and fibroblast growth factor applied to the transectioned sciatic nerve on neuron death in adult rat dorsal root ganglia, Neurosci. Lett. 83:156 (1987).

    Article  PubMed  CAS  Google Scholar 

  88. R. Heumann, D. Lindholm, C. Brandtlow, M. Meyer, M. J. Radeke, T. P. Misko, E. Shooter, and H. Thoenen, Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration and regeneration: role of macrophages, Proc. Natl. Acad. Sci. USA 84:8735 (1987).

    Article  PubMed  CAS  Google Scholar 

  89. D. B. MacLean, S. F. Lewis, and F. B. Wheeler, Substance P content in cultured neonatal rat vagal sensory neurons: the effect of nerve growth factor, Brain Res. 457:53 (1988).

    Article  PubMed  CAS  Google Scholar 

  90. Z. Wiesenfeld-Hallin, T. Hökfelt, J. M. Lundberg, W. G. Forssmann, M. Reinecke, F. A. Tschopp, and J. A. Fischer, Immunoreactive calcitonin gene-related peptide and substance P coexist in sensory neurons to the spinal cord and interact in spinal behavioral responses of the rat, Neurosci. Lett. 52:199 (1984).

    Article  PubMed  CAS  Google Scholar 

  91. R.A. Cridland and J. L. Henry, N- and C-terminal fragments of substance P: spinal effects in the rat tail flick test, Brain Res. Bull. 20:429 (1988).

    Article  PubMed  CAS  Google Scholar 

  92. A. Carlsson, Peptide neurotransmitters — redundant vestiges?, Pharmacol & Toxicol. 62:241 (1988).

    Article  CAS  Google Scholar 

  93. M. I. Sweeney and J. Sawynok, Evidence that substance P may be modulator rather than a transmitter of noxious mechanical stimulation, Can. J. Physiol Pharmacol. 64:1324 (1986).

    Article  PubMed  CAS  Google Scholar 

  94. H. Frenk, D. Bossut, G. Urca, and D. J. Mayer, Is substance P a primary afferent neurotransmitter for nociceptive input? I. Analysis of pain-related behaviors resulting from intrathecal administration of substance P and 6 excitatory compounds, Brain Res. 455:223 (1988).

    Article  PubMed  CAS  Google Scholar 

  95. D. Bossut, H. Frenk, and D. J. Mayer, Is substance P a primary afferent neurotransmitter for nociceptive input? II. spinalization does not reduce and intrathecal morphine potentiates behavioral responses to substance P, Brain Res. 455:232 (1988).

    Article  PubMed  CAS  Google Scholar 

  96. H. Frenk, D. Bossut, and D. J. Mayer, Is substance P a primary afferent neurotransmitter for nociceptive input? III. Valproic acid and chlordiazepoxide decrease behaviors elicited by intrathecal injection of substance P and excitatory compounds, Brain Res. 455:240 (1988).

    Article  PubMed  CAS  Google Scholar 

  97. D. Bossut, H. Frenk, D. J. Mayer, Is substance P a primary afferent neurotransmitter for nociceptive input? IV. 2-Amino-5- phosphonovalerate (APV) and [D-Pro2, D-Trp7,9]-substance P exert different effects on behaviors induced by intrathecal substance P, strychnine and kaninic acid, Brain Res. 455:247 (1988).

    Article  PubMed  CAS  Google Scholar 

  98. G. Battaglia and A. Rustioni, Coexistence of glutamate and substance P in dorsal root ganglion neurons of the rat and monkey, J. Comp. Neurol. 277:302 (1988).

    Article  PubMed  CAS  Google Scholar 

  99. H. J. Cho and A. I. Basbaum, Increased staining of immunoreactive dynorphin cell bodies in the deafferented spinal cord of the rat, Neurosci. Lett. 84:125 (1988).

    Article  PubMed  CAS  Google Scholar 

  100. D. F. Cechetto and C. B. Saper, Neurochemical organization of the hypothalamic projection to the spinal cord in the rat, J. Comp. Neurol. 272:579 (1988).

    Article  PubMed  CAS  Google Scholar 

  101. D. L. McNeill, K. Chung, S. M. Carlton, and R. E. Coggeshall, Calcitonin gene-related peptide immunostained axons provide evidence for fine primary afferent fibers in the dorsal and dorsolateral funiculi of the rat spinal cord, J. Comp. Neurol. 272:303 (1988).

    Article  PubMed  CAS  Google Scholar 

  102. S. M. Carlton, D. L. McNeill, K. Chung, and R. E. Coggeshall, A light and electron microscopic level analysis of calcitonin gene-related peptide (CGRP) in the spinal cord of the primate: an immunohistochemical study, Neurosci. Lett. 82:145 (1987).

    Article  PubMed  CAS  Google Scholar 

  103. O. Takahashi, R. J. Traub, and M. A. Ruda, Demonstration of calcitonin-gene-related peptide immunoreactive axons contacting dynorphin A (1-8) immunoreactive spinal neurons in a rat model of peripheral inflammation and hyperalgesia, Brain Res. 475:168 (1988).

    Article  PubMed  CAS  Google Scholar 

  104. K. B. Thor and C. J. Heike, Serotonin- and substance P-containing projections to the nucleus tractus solitarii of the rat, J. Comp. Neurol. 265:275 (1987).

    Article  PubMed  CAS  Google Scholar 

  105. A. W. Duggan, C. R. Morton, Z. Q. Zhao, and I. A. Hendry, Noxious heating of the skin releases immunoreactive substance P in the substantia gelatinosa of the cat: a study with antibody microprobes, Brain Res. 403:345 (1987).

    Article  PubMed  CAS  Google Scholar 

  106. K. Noguchi, Y. Morita, H. Kiyama, K. Ono, and M. Tohyama, A noxious stimulus induces the preprotachykinin-A gene expression in the rat dorsal root ganglion: a quantitative study using in situ hybridization histochemistry, Mol. Brain Res. 4:31 (1988).

    Article  CAS  Google Scholar 

  107. R. Oku, M. Sato, and H. Tagaki, Release of substance P from the spinal dorsal horn is enhanced in polyarthritic rats, Neurosci. Lett 74:315 (1987).

    Article  PubMed  CAS  Google Scholar 

  108. C. Post, L. Alari, and T. Hökfelt, Intrathecal galanin increases the latency in the tail-flick and hot-plate tests in mouse, Acta Physiol. Scand. 132:583 (1988).

    Article  PubMed  CAS  Google Scholar 

  109. E. Weihe, D. Nohr, M. J. Millan, C. Stein, C. Gramsch, V. Höllt, A. Herz, Experimental phalin- and polyarthritis differentially intensify immunostaining of multiple proenkephalin- and prodynorphin-opioid peptides in rat lumbosacral neurons. Advances in the Biosciences, Pergamon Press (in press) (1988).

    Google Scholar 

  110. E. Weihe, M. J. Millan, A. Leibold, D. Nohr, and A. Herz, Co-localization of proenkephalin- and prodynorphin-derived opioid peptides in laminae IV/V spinal neurons revealed in arthritic rats. Neurosci. Lett. 85:187 (1988).

    Article  PubMed  CAS  Google Scholar 

  111. M. J. Millan, M. H. Millan, A. Czlonkowski, V. Höllt, C. W. T. Pilcher, A. Herz, and F. C. Colpaert, A model of chronic pain in the rat: response of multiple opioid systems to adjuvant-induced arthritis, J. Neurosci. 6:899 (1986).

    PubMed  CAS  Google Scholar 

  112. M. A. Ruda, M. J. Iadarola, L. V. Cohen, and W. S. Young III, In situ hybridization histochemistry and immunocytochemistry reveal an increase in spinal dynorphin biosynthesis in a rat model of peripheral inflammation and hyperalgesia, Proc. Natl. Acad. Sci. USA 85:622 (1988).

    Article  PubMed  CAS  Google Scholar 

  113. R. A. Cridland and J. L. Henry, Effects of intrathecal administration of neuropeptides on a spinal nociceptive reflex in the rat: VIP, galanin, CGRP, TRH, somatostatin and angiotensin II, Neuropeptides 11:23 (1988).

    Article  PubMed  CAS  Google Scholar 

  114. Z. Wiesenfeld-Hallin, Substance P and somatostatin modulate spinal excitability via physiologically different sensory pathways, Brain Res. 372:172 (1986).

    Article  PubMed  CAS  Google Scholar 

  115. Z. Wiesenfeld-Hallin, Intrathecal vasoactive intestinal polypeptide modulates spinal reflex excitability primarily to cutaneous thermal stimuli in rats, Neurosci. Lett. 80:293 (1987).

    Article  PubMed  CAS  Google Scholar 

  116. P. Mollenholt, C. Post, N. Rawal, J. Freedman, T. Hökfelt, and I. Paulsson, Antinociceptive and “neurotoxic” actions of somatostatin in rat spinal cord after intrathecal administration, Pain 32:95 (1988).

    Article  PubMed  CAS  Google Scholar 

  117. Y. Kuraishi, T Nanayama, H. Ohno, M. Minami, and M. Satoh, Antinociception induced in rats by intrathecal administration of antiserum against calcitonin gene-related peptide, Neurosci. Lett. 92:325 (1988).

    Article  PubMed  CAS  Google Scholar 

  118. I. L. Gibbins and J. L. Morris, Co-existence of neuropeptides in sympathetic, cranial autonomic and sensory neurons innervating the iris of the guinea-pig, J. Autonom. Nerv. Syst. 21:67 (1987).

    Article  CAS  Google Scholar 

  119. E. Weihe, W. Hartschuh, Multiple peptides in cutaneous nerves: regulators under physiological conditions and pathogenetic role in skin disease? Seminars Dermatol. 7: (in press).

    Google Scholar 

  120. H. C. Su, J. M. Wharton, J. M. Polak, P. K. Mulderry, M. A. Ghatei, S. J. Gibson, G. Terenghi, J. F. B. Morrison, J. Ballesta, and S. R. Bloom, Calcitonin gene-related peptide immunoreactivity in afferent neurons supplying the urinary tract: combined retrograde tracing and immunohistochemlstry, Neuroscience 18:727 (1986).

    Article  PubMed  CAS  Google Scholar 

  121. D. Nohr, J. Krekel, and E. Weihe, Opioid peptides are present in nerve fibers of the respiratory tract, Regulatory Peptides 22:425 (1988).

    Article  Google Scholar 

  122. S. Konrad, J. Zentel, and E. Weihe, Differential presence of opioid peptides in nerves supplying guinea-pig and rat urinary tract, Regulatory Peptides 22:414 (1988)

    Article  Google Scholar 

  123. T. Fink, E. Weihe, Multiple neuropeptides in nerves supplying mammalian lymph nodes: messenger candidates for sensory and autonomic neuroimmunomodulation? Neurosci. Lett. 90:39 (1988).

    Article  PubMed  CAS  Google Scholar 

  124. E. Weihe, T. Fink, and S. Müller, Substance P in nerves supplying the immune system: A messenger role of tachykinins in sensory neuroimmunomodulation? Regulatory Peptides 22:186 (1988).

    Article  Google Scholar 

  125. E. Weihe, S. Müller, T. Fink, H. J. Zentel, Peptides in nerves of the mammalian thymus: interactions with mast cells in autonomic and sensory neuroimmunomodulation? Neurosci. Lett. (in press).

    Google Scholar 

  126. M. R. Matthews, M. Connaughton, and A. C. Cuello, Ultrastructure and distribution of substance-P immunoreactive sensory collaterals in the guinea pig prevertebral sympathetic ganglia, J. Comp. Neurol. 258:28 (1987).

    Article  PubMed  CAS  Google Scholar 

  127. B. Lindh, T. Hökfelt, and L.-G. Elfvin, Distribution and origin of peptide-containing nerve fibers in the celiac superior mesenteric ganglion of the guinea-pig, Neuroscience 26:1037 (1988).

    Article  PubMed  CAS  Google Scholar 

  128. R Amann, G. Skofitsch, and F. Lembeck, Species- related differences in the capsaicin-sensitive innervation of the rat and guinea-pig ureter, Naun.-Schmied. Arch. Pharmacol. 338:407 (1988).

    CAS  Google Scholar 

  129. D. Nohr and E. Weihe, Light microscopic immunohistochemistry reveals species-dependent presence of tachykinins in intrinsic neurons in the mammalian respiratory tract, Regulatory Peptides 22:425 (1988).

    Article  Google Scholar 

  130. J. M. Lundberg, C.-R. Martling, and L. Lundblad, Cigarette smoke-induced irritation in the airways in relation to peptide-containing, capsaicin-sensitive sensory neurons, Klin. Wochenschr. 66 (Suppl. XI): 151 (1988)

    PubMed  CAS  Google Scholar 

  131. R. W. Fuller, J.-A. Karlsson, N. B. Choudry, and N. B. Pride, Effect of inhaled and sytemic opiates on responses to inhaled capsaicin in humans, J. Appl. Physiol. 65:1125 (1988).

    PubMed  CAS  Google Scholar 

  132. A. I. Basbaum, D. Menetrey, R. Presley, and J. D. Levine, The contribution of the nervous system to experimental arthritis in the rat, in: “The arthritic rat as a model of clinical pain?,” J. M. Besson and G. Guilbaud, eds., Excerpta Medica, Elsevier, Amsterdam, New York, Oxford (1988).

    Google Scholar 

  133. C. L. Kimberly and M. R. Byers, Inflammation of rat molar pulp and periodontium causes increased calcitonin gene-related and axonal sprouting, Anat. Rec. 222:289 (1988).

    Article  PubMed  CAS  Google Scholar 

  134. M. Büchler, E. Weihe, P. Malfertheimer, H. Friess, and H. G. Berger, Neurotransmitters in nerves in chronic pancreatitis, Pancreas (in press).

    Google Scholar 

  135. C. Stein, M. J. Millan, A, Yassouridis, and A. Herz, Antinociceptive effects of µ- and kappa-agonists in inflammation are enhanced by a peripheral opioid receptor-specific mechanism, Eur. J. Pharm. 155:255 (1988).

    Article  CAS  Google Scholar 

  136. M. J. Millan, C. Stein, E. Weihe, D. Nohr, V. Höllt, A. Czlonkowski, and A. Herz, Dynorphin and kappa- receptors in the control of nociception: response to peripheral inflammation and the pharmacology of kappa-antinociception, in: “The arthritic rat as a model of clinical pain?”, J. M. Besson and G. Guilbaud, eds., Excerpta Medica, Elsevier, Amsterdam, New York, Oxford (1988).

    Google Scholar 

  137. L. R. Steranka, D. C. Manning, C. J. De Haas, J. W. Ferkany, S. A. Borosky, J. R. Connor, R. J. Vavrek, J. M. Stewart, and S. H. Snyder, Bradykinin as a pain mediator: receptors are localized to sensory neurons and antagonists have analgesic actions, Proc. Natl. Acad. Sci. USA 85:3245 (1988).

    Article  PubMed  CAS  Google Scholar 

  138. D. M. White and M. Zimmermann, The bradykinin- Induced release of subsatnce P from nerve fibre endings in the rat saphenous nerve neuroma is not related to electrophysiological excitation, Neurosci. Lett. 92:108 (1988).

    Article  PubMed  CAS  Google Scholar 

  139. N. E. S. Sibinga and A. Goldstein, Opioid peptides and opioid receptors in cells of the immune system, Ann. Rev. Immunol. 6:219 (1988).

    Article  CAS  Google Scholar 

  140. H. M. Johnson and B. A. Torres, Immunoregulatory properties of neuroendocrine peptide hormones, in: “Progress in Allergy”, P. Kallós, ed., S. Karger, Basel (1988).

    Google Scholar 

  141. J. M. Martin, M. B. Prystowski, and R. H. Angeletti, Preproenkephalin mRNA in T-cells, macrophages, and mast cells, J. Neurosci. Res. 18:82 (1987).

    Article  PubMed  CAS  Google Scholar 

  142. J. E. Taylor, J. P. Moreau, and F. V. DeFeudis, Small peptides and nerve growth: theraputic implications, Drug Development Res. 11:75 (1987)

    Article  CAS  Google Scholar 

  143. J. P. Smith and T. E. Solomon, Effects of gastrin, and somatostatin on growth of human colon cancer, Gastroenterol. 95:1541 (1988).

    CAS  Google Scholar 

  144. T. C. Moore, C. H. Spruck and S. I. Said, In vivo depression of lymphocyte traffic in sheep by VIP and HIV (AIDS)-related peptides, Immunopharmacol. 16:181 (1988).

    Article  CAS  Google Scholar 

  145. J. P. McGillis, M. L. Organist, and D. G. Payan, Substance P and immunoregulation, Fed. Proc. 46:196 (1987).

    PubMed  CAS  Google Scholar 

  146. R. D. Helme, A. Eglezos, G. W. Dandie, P. V. Andrews, and R. L. Boyd, The effect of substance P on the regional lymph node antibody response to antigenic stimulation in capsaicin-pretreated rats, J. Immunol. 139:3470 (1987).

    PubMed  CAS  Google Scholar 

  147. G. Nilsson and S. Ahlstedt, Altered lymphocyte proliferatiom of immunized rats after neurological manipulation with capsaicin Int. J. Immunopharmac. 10:747 (1988).

    Article  CAS  Google Scholar 

  148. E. S. Kimball, F. J. Persico, and J. L. Vaught, Substance P, neurokinin A, and neurokinin B induce generation of IL-1 like activity in P388D1 cells: Possible relevance to arthritic disease, J. Immunol. 141:3564 (1988).

    PubMed  CAS  Google Scholar 

  149. J. P. Robinson, G. B. Willars, D. R. Tomlinson, and P. Keen, Axonal transport and tissue contents of substance P in rats with long-term streptozotocin-diabetes. Effect of the aldolase reductase inhibitor ‘Statil’, Brain Res 426:339 (1987).

    Article  PubMed  CAS  Google Scholar 

  150. K. B. Walker, R. H. Serwonska, F. H. Valone, W. S. Harkonen, O.L. Frick, K. H. Scriven, W. D. Ratnoff, J. G. Browning, D. G. Payan, and E. J. Goetzl, J. Clin. Immunol. 8:108 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Weihe, E. (1990). Neuropeptides in Primary Afferent Neurons. In: Zenker, W., Neuhuber, W.L. (eds) The Primary Afferent Neuron. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0579-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0579-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7875-7

  • Online ISBN: 978-1-4613-0579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics