Skip to main content

Remodeling of Neuronal Subpopulations in Dorsal Root Ganglion: Role of Chemical Factors and Intercellular Contacts

  • Chapter
The Primary Afferent Neuron
  • 103 Accesses

Abstract

The primary sensory neurons enclosed in the dorsal root ganglion (DRG) offer neurobiologists the possibility to test the influence exerted by environmental conditions on the phenotypes expressed by DRG cells. Although the population of the primary sensory neurons originates from a common source, the neural crest, DRG cells differentiate into various neuronal subpopulations which may be distinguished by their peripheral and central projections, electrophysiological properties, enzymatic equipment, pharmacological receptors, neurotransmitter content, cell surface antigens as well as cytochemical and ultrastructural characteristics. The proportion of these neuronal subpopulations shows great fluctuations with the age (Droz and Kazimierczak, 1987), position of the DRG along the neuraxis (Masurich et al., 1986a), or alteration of the innervated targets (Carr and Simpson, 1978; Philippe et al., 1988). It is therefore important to specify the cellular mechanisms which are involved in the remodeling of the neuronal population in DRG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andres, K. H., 1961, Untersuchungen über den Feinbau von Spinalganglien, Z. Zellforsch., 55:1–48

    Article  PubMed  CAS  Google Scholar 

  • Arquint, M., Roder, J., Loo-Sar, C., Down, J., Wilkinson, D.,Baley, H., Braun, P. and Dunn, R., 1987, Molecular cloning and primary structure of myelin-associated glycoprotein, Proc. Nat. Acad. Sci.. (USA), 84:600–604

    Google Scholar 

  • Barakat, I., and Droz, B., 1987, Differentiation of post mitotic neuroblasts into substance P-immunoreactive sensory neurons in dissociated cultures of chick dorsal root ganglion, Devl. Biol., 122:274–286

    Article  CAS  Google Scholar 

  • Barakat, I., and Droz, B., 1989, Inducing effect of skeletal muscle extracts on the appearance of calbindin-immunoreactive dorsal root ganglion cells in culture, Neuroscience, 28:39–47

    Article  PubMed  CAS  Google Scholar 

  • Barakat, I., Kazimierczak, J., and Droz, B., 1986, Carbonic anhydradrase activity in primary sensory neurons. II. Influence of environmental factors on the phenotypic expression of the enzyme in dissociated cultures of chicken dorsal root ganglion cells, Cell Tissue Res., 245:497–505

    Article  PubMed  CAS  Google Scholar 

  • Bossart, E., Barakat, I., and Droz, B., 1988, Expression of calbindin immunoreactivity by subpopulations of primary sensory neurons in chick embryo dorsal root ganglion cells grown in coculture or conditioned medium, Dev. Neurosci., 10:81–90

    Article  PubMed  CAS  Google Scholar 

  • Carr, V. McM., and Simpson, S. B., 1978, Proliferation and degenerative events in the early development of chick dorsal root ganglia: responses to altered peripheral fields, J. Comp. Neurol., 182:741–756

    Article  PubMed  CAS  Google Scholar 

  • Celio, M. R., and Norman, A. W., 1985, Nucleus basalis Meynert neurons contain the vitamin D-induced calcium binding protein (calbindin D-28K), Anat. Embryol., 173:143–148

    Article  PubMed  CAS  Google Scholar 

  • Chalazonitis, A., and Fischbach, G. D., 1980, Elevated potassium induces morphological differentiation of dorsal root ganglionic neurons in dissociated cell culture, Dev. Biol., 78:173–183

    Article  PubMed  CAS  Google Scholar 

  • Davies, A. M., 1986, The survival and growth of embryonic proprioceptive neurons is promoted by a factor present in skeletal muscle, Devl. Biol., 115:56–67

    Article  CAS  Google Scholar 

  • Devor, M., and Govrin-Lippmann, R., 1985, Neurogenesis in adult rat dorsal root ganglia, Neurosci. Lett., 61:189–194

    Article  PubMed  CAS  Google Scholar 

  • Droz, B., and Kazimierczak, J., 1987, Carbonic anhydrase in primary sensory neurons, Comp. Biochem. Physiol., 88B: 713–717

    CAS  Google Scholar 

  • Ernsberger, U., and Rohrer, H., 1988, Neuronal precursor cells in chick dorsal root ganglia: Differentiation and survival in vitro, Devl. Biol., 126:420–432

    Article  CAS  Google Scholar 

  • Marusich, M. F., Pourmehr, K., and Weston, J. A., 1986a, Amonoclonal antibody (SN1) identifies a subpopulation of avian sensory neurons whose distribution is correlated with axial level, Devl. Biol., 118:494–504

    Article  CAS  Google Scholar 

  • Marusich, M. F., Pourmehr, K., and Weston, J. A., 1986b, The development of an identified subpopulation of avian sensory neurons is regulated by interaction with the periphery, Devl. Biol., 118:505–510

    Article  CAS  Google Scholar 

  • Mudge, A. W., 1981, Effect of chemical environment on levels of substance P and somatostatin in cultured sensory neurons, Nature, 292:764–767

    Article  PubMed  CAS  Google Scholar 

  • Omlin, F. X, Matthieu, J. M., Philippe, E., Roch, J. M., and Droz, B., 1985, Expression of myelin-associated glycoprotein by small neurons of the dorsal root ganglion in chickens, Science, 227:1359–1360

    Article  PubMed  CAS  Google Scholar 

  • Pannese, E., 1974, The histogenesis of the spinal ganglia, Adv. Anat. Embryol. Cell Biol., 47:3–97

    Google Scholar 

  • Philippe, E., and Droz, B., 1988, Calbindin D-28K immunoreactive neurons in chick dorsal root ganglion: ontogenesis and cytological characteristics of the immunoreactive sensory neurons, Neuroscience, 26:215–224

    Article  PubMed  CAS  Google Scholar 

  • Philippe, E., and Droz, B., 1989, Calbindin immunoreactive sensory neurons of dorsal root ganglion project to skeletal muscle in the chick, J. Comp. Neurol., (in press)

    Google Scholar 

  • Philippe, E., Garosi, M., and Droz, B., 1988, Influence of peripheral and central targets on subpopulations of sensory neurons expressing calbindin immunoreactivity in the dorsal root ganglion of the chick embryo, Neuroscience, 26:225–232

    Article  PubMed  CAS  Google Scholar 

  • Philippe, E., Omlin, F. X., and Droz, B., 1986, Myelin-associated glycoprotein immunoreactive material: an early neuronal marker of dorsal root ganglion cells during chick development, Dev. Brain Res., 27:275–277

    Article  CAS  Google Scholar 

  • Rambourg, A., Clermont, Y., and Beaudet, A., 1983, Ultrastructural features of six types of neurons in rat dorsal root ganglia, J. Neurocytol., 12:47–66

    Article  PubMed  CAS  Google Scholar 

  • Rochat, A., Omlin, F. X., and Droz, B., 1988, Substrate-dependent migration of myelin-associated glycoprotein immunoreactive cells in cultured explants of dorsal root ganglia from chick embryos, Dev. Neurosci., 10:236–244

    Article  PubMed  CAS  Google Scholar 

  • Rohrer, H., Henke-Fahle, S., El-Shakawy, T., Lux, H. D., and Thoenen, H., 1985, Progenitor cells from embryonic chick dorsal root ganglia differentiate in vitro to neurons: biochemical and electrophysiological evidence, EMBO J., 4:1709–1714

    PubMed  CAS  Google Scholar 

  • Scott, B. S., 1977, The effect of elevated potassium on the time course of neuron survival in cultures of dissociated dorsal root ganglia, J. Cell Physiol., 91:305–316

    Article  PubMed  CAS  Google Scholar 

  • Schweizer, G., Ayer-Le Lièvre, C., and Le Douarin, N. M., 1983, Restriction capacities in the dorsal root ganglia during the course of development, Cell Diff., 13:191–200

    Article  CAS  Google Scholar 

  • Tello, J. F., 1922, Die Entstehung der motorischen und sensiblen Nervenendigungen. I. In dem lokomotorischen System der höheren Wirbeltiere: Muskuläre Histogenese, Z. Anat. Entw. Gesch., 64:348–440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Droz, B., Barakat, I., Kazimierczak, J., Philippe, E., Rochat, A. (1990). Remodeling of Neuronal Subpopulations in Dorsal Root Ganglion: Role of Chemical Factors and Intercellular Contacts. In: Zenker, W., Neuhuber, W.L. (eds) The Primary Afferent Neuron. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0579-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0579-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7875-7

  • Online ISBN: 978-1-4613-0579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics